Linear Algebra and Optimization

Ankur Moitra

Developed and co-taught with Pablo Parrilo

Online Seminar on Undergraduate Math Education

OUTLINE

(1) What is it?

Goals, Structure and Audience
(2) How is it different?

Pedagogy, Computation
(3) Where did it come from?

Math Foundations for Data Science

OVERVIEW

Goals: (1) Introduction to linear algebra and optimization, with a view towards modeling, computation and applications.

OVERVIEW

Goals: (1) Introduction to linear algebra and optimization, with a view towards modeling, computation and applications.
(2) Solid, broad foundation for engineering and science, across the Institute.

OVERVIEW

Goals: (1) Introduction to linear algebra and optimization, with a view towards modeling, computation and applications.
(2) Solid, broad foundation for engineering and science, across the Institute.

Collaboration between Course 6 (EECS) and Course 18 (Math)

OVERVIEW

Goals: (1) Introduction to linear algebra and optimization, with a view towards modeling, computation and applications.
(2) Solid, broad foundation for engineering and science, across the Institute.

Collaboration between Course 6 (EECS) and Course 18 (Math)
Audience: Sophomore level

OVERVIEW

Goals: (1) Introduction to linear algebra and optimization, with a view towards modeling, computation and applications.
(2) Solid, broad foundation for engineering and science, across the Institute.

Collaboration between Course 6 (EECS) and Course 18 (Math)
Audience: Sophomore level
Piloted in Fall 2020, taught every Fall since then

STRUCTURE

Weekly psets

Online checkups

Recitations

Miniprojects (in Julia)

Three tests

Part I: Working with Vectors and Matrices
Lecture 1: A Panoramic View of Linear Algebra
Lecture 2: The Geometry of Linear Equations
Lecture 3: Gaussian Elimination and Applications to Circuit Analysis
Lecture 4: Multiplying Matrices and Applications to Counting Walks
Lecture 5: Visualizations: Projections, Reflections, Rotations and Permutations
Lecture 6: Vector Spaces, Linear Combinations and Column/Null Spaces

Part II: Geometric Foundations
Lecture 7: The Rank, and its Equivalent Formulations
Lecture 8: Linear Independence, Dimension and Bases
Lecture 9: Orthogonality and Gram-Schmidt
Lecture 10: The Determinant and its Properties
Lecture 11: The Matrix Inverse, Existence and Projections
Lecture 12: Least Squares and Regularization

Part III: The Singular Value Decomposition and Applications
Lecture 13: The Singular Value Decomposition
Lecture 14: The Condition Number and Stability
Lecture 15: Principal Component Analysis and Applications to Genetics
Lecture 16: Word Embeddings and Exploring Biases in Data
Lecture 17: Eigenvalues and Eigenvectors
Lecture 18: The Eigendecomposition and Algebraic vs. Geometric Multiplicity
Lecture 20: Markov Matrices and Applications to PageRank

Part IV: Quadratic Programming and Applications
Lecture 21: Linear and Quadratic Programming
Lecture 22: Support Vector Machines and the Kernel Trick
Lecture 23: The Perceptron Algorithm

Part V: Convex Optimization and Gradient Descent

AUDIENCE
Draw on a variety of applications, already seems to appeal to a broader audience, self-reported interests:

ENROLLMENT

Home Departments

Student Years

WHAT'S NEW?

Many introductory linear algebra classes are recipe-driven

WHAT'S NEW?

Many introductory linear algebra classes are recipe-driven
Can you solve this linear system?

WHAT'S NEW?

Many introductory linear algebra classes are recipe-driven

Can you solve this linear system?

Can you put this matrix in row-echelon form?

WHAT'S NEW?

Many introductory linear algebra classes are recipe-driven

Can you solve this linear system?
Can you put this matrix in row-echelon form?
Can you compute a basis for this vector space?

WHAT'S NEW?

Many introductory linear algebra classes are recipe-driven

Can you solve this linear system?
Can you put this matrix in row-echelon form?
Can you compute a basis for this vector space?
Can you compute the eigenvalues?

WHAT'S NEW?

Solving things by hand is a first step, but not the end goal

WHAT'S NEW?

Solving things by hand is a first step, but not the end goal

Can you recognize when the problem you want to solve is actually just linear algebra in disguise?

WHAT'S NEW?

Solving things by hand is a first step, but not the end goal

Can you recognize when the problem you want to solve is actually just linear algebra in disguise?

Drawing on applications spanning science and engineering:
(1) Practice applying linear algebra concepts in the wild

WHAT'S NEW?

Solving things by hand is a first step, but not the end goal

Can you recognize when the problem you want to solve is actually just linear algebra in disguise?

Drawing on applications spanning science and engineering:
(1) Practice applying linear algebra concepts in the wild
(2) Build familiarity with computational tools (i.e. Julia)

WHAT IS A VECTOR AND WHY DO WE CARE?

Powerful way to represent and manipulate data, e.g.

WHAT IS A VECTOR AND WHY DO WE CARE?

Powerful way to represent and manipulate data, e.g.

Each image can be thought of as a 115200 dimensional vector

WHAT IS A VECTOR AND WHY DO WE CARE?

Powerful way to represent and manipulate data, e.g.

Each image can be thought of as a 115200 dimensional vector
How can we manipulate them in interesting ways?

WHAT IS A VECTOR AND WHY DO WE CARE?

Powerful way to represent and manipulate data, e.g.

Composite image, [Oliva, Torralba]

WHAT IS A VECTOR AND WHY DO WE CARE?

Powerful way to represent and manipulate data, e.g.

Composite image, [Oliva, Torralba]

How do we represent these operations (blur, find edges)?

VISUAL EXAMPLES

Why is the box rotating?

VISUAL EXAMPLES

Why is the box rotating?

Composing two reflections gives a rotation. What is the angle?

LINEAR ALGEBRA IN DISGUISE

Nature solves linear algebra problems all the time

LINEAR ALGEBRA IN DISGUISE

Nature solves linear algebra problems all the time

If we send one unit of current in through a_{1} and out of a_{6}, what are the voltages at all the junctions?

LINEAR ALGEBRA IN DISGUISE

Nature solves linear algebra problems all the time

If we send one unit of current in through a_{1} and out of a_{6}, what are the voltages at all the junctions?

Can we use Kirchoff's laws to translate this into a linear system?

PUTTING THE SVD FRONT AND CENTER

Why don't all introductory courses teach the SVD?

PUTTING THE SVD FRONT AND CENTER

Why don't all introductory courses teach the SVD?

More abstract, e.g. can't compute anything by hand

PUTTING THE SVD FRONT AND CENTER

Why don't all introductory courses teach the SVD?

More abstract, e.g. can't compute anything by hand
_ It's the Swiss army knife of linear algebra

PUTTING THE SVD FRONT AND CENTER

Why don't all introductory courses teach the SVD?

More abstract, e.g. can't compute anything by hand
It's the Swiss army knife of linear algebra

Leads to more robust notions, e.g. approximate rank

CONNECTIONS TO DATA SCIENCE

It's also the first thing you try in applications

CONNECTIONS TO DATA SCIENCE

It's also the first thing you try in applications
e.g. finding the largest directions of variance, to visualize high-dimensional data

CONNECTIONS TO DATA SCIENCE

It's also the first thing you try in applications
e.g. finding the largest directions of variance, to visualize high-dimensional data

US Senator Voting Records

CONNECTIONS TO DATA SCIENCE

It's also the first thing you try in applications
e.g. finding the largest directions of variance, to visualize high-dimensional data

Genes Mirror Geography

CONNECTIONS TO DATA SCIENCE

Can even understand biases in data, e.g. in word embeddings

n pr

innovation
He's Brilliant, She's Lovely: Teaching Computers To Be Less Sexist

August 12, $2016 \cdot 8: 01$ AM ET

HOPPING BUNNY PROJECT

In the barrier, bunny more likely to hop outwards

HOPPING BUNNY PROJECT

In the barrier, bunny more likely to hop outwards

How does the eigengap depend on the length of the barrier?

HOPPING BUNNY PROJECT

In the barrier, bunny more likely to hop outwards

How does the eigengap depend on the length of the barrier?
Students compute how the coefficients in the eigenbasis change, better behaved progress measure than distance to steady state

MENS ET MANUS

We want students to think of computational tools as a resource, e.g. for trying things out and reinforcing what they've learned

MENS ET MANUS

We want students to think of computational tools as a resource, e.g. for trying things out and reinforcing what they've learned

Lesson: Need programming to come in early, otherwise students avoid it

MORE LESSONS

Difficult to do proofs without really doing proofs, e.g.

P7. [5+5 pts] Suppose that there are square matrices A, B and T that satisfy

$$
A T+B=0 .
$$

(a) Show that $C(A) \subseteq C(B)$ or find a counter example
(b) Show that $C(B) \subseteq C(A)$ or find a counter example

MORE LESSONS

Difficult to do proofs without really doing proofs, e.g.

P7. [5+5 pts] Suppose that there are square matrices A, B and T that satisfy

$$
A T+B=0 .
$$

(a) Show that $C(A) \subseteq C(B)$ or find a counter example
(b) Show that $C(B) \subseteq C(A)$ or find a counter example

Students find it challenging knowing how to apply a definition

MORE LESSONS

Tough to find new, creative examples of applying linear algebra year after year

P12. $[5+4+3 \mathrm{pts}]$ Consider the following Venn diagram:

We have three sets A, B and C and there are four regions. E.g. region 2 is the set of all elements in A and B but not in C.
The notation $|A|$ means the number of elements in A. Furthermore $A \cap B$ denotes the set of elements that are in both A and B. Now suppose we know $|A|=v_{A},|B|=v_{B}$, $|C|=v_{C}$ and $|A \cap B|=v_{A B}$.
(a) Write down a linear system to solve for the number of elements in each of the four regions, x_{1}, x_{2}, x_{3} and x_{4} respectively, in terms of v_{A}, v_{B}, v_{C} and $v_{A B}$.

INSTITUTIONAL CONTEXT

Massive demand for EECS

INSTITUTIONAL CONTEXT

In Spring 2020, Leslie Kaelbling chaired a committee to develop a new artificial intelligence major

INSTITUTIONAL CONTEXT

In Spring 2020, Leslie Kaelbling chaired a committee to develop a new artificial intelligence major

What all math should students know?

INSTITUTIONAL CONTEXT

In Spring 2020, Leslie Kaelbling chaired a committee to develop a new artificial intelligence major

What all math should students know?

Single variable calculus, multivariable calculus, discrete math, probability, statistics, linear algebra, optimization, differential equations

INSTITUTIONAL CONTEXT

In Spring 2020, Leslie Kaelbling chaired a committee to develop a new artificial intelligence major

What all math should students know?

Single variable calculus, multivariable calculus, discrete math, probability, statistics, linear algebra, optimization, differential equations

Unfortunately not feasible, given other necessities, e.g. programming, machine learning, algorithms, project-based classes

INSTITUTIONAL CONTEXT

Came up with the following structure (14.5 subjects)

ANOTHER CALL TO ARMS

From interviewing faculty:
"Students have taken linear algebra, and yet they can't visualize what's happening in the perceptron algorithm"

ANOTHER CALL TO ARMS

From interviewing faculty:
> "Students have taken linear algebra, and yet they can't visualize what's happening in the perceptron algorithm"

Why is that?

COMMON GROUND

Chaired by Asu Ozdaglar and Jeffrey Grossman

COMMON GROUND

Chaired by Asu Ozdaglar and Jeffrey Grossman

...to infuse computing education across MIT, and coordinate among departments

LOOKING FORWARD

Main takeaway:

Deliberately teach students how to make connections?
Problem \rightarrow Model \rightarrow Algorithm \rightarrow Code \rightarrow Results $\rightarrow \begin{aligned} & \text { Evaluation/ } \\ & \text { Interpretation }\end{aligned}$

Thanks! Any Questions?

