Developing math projects that are authentic and allow student voice and choice

Paul E. Hand

Associate Professor
Math and Computer Science Northeastern University

Director, Tapia Camps
Tapia Center
Rice University

Tapia STEM Camps at Rice University

2000+ middle and high school students have attended
Project Based STEM Camp emphasizing communication and equity

Tapia PD Camps at Rice University

$400+\mathrm{K}-12$ educators students have attended Professional Development Camp on Project Based Learning

BID

CALC Squared Program with Houston ISD

Summer camp for incoming AP Calculus students and professional development for their teachers

NSF Award with San Jacinto College

Supported 20+ college math professors who built projects for their classrooms

We develop original STEM projects

These students are building
a model underground
reservoir for storing carbon to mitigate climate change

Even if you don't do projects principles of PBL can be brought to your teaching.

Authenticity

\rightarrow Is it related to the students' lives?
\rightarrow Is it related to what professionals do?
\rightarrow Can the students actually create something with it?

1. Should solar panels have motors so they always face the sun?

Students choose a context (geographic location, home

 vs company, etc.) and justify if they think it is worth it to purchase motors in addition to solar panels.\rightarrow Many students care about climate change and decisions they make that affects it.
\rightarrow Some households make this decision and schools and businesses too.
\rightarrow Different groups may disagree and that is fine, even in a math class!

2. How far is the horizon?

Students compute how far away you can see what looking out to the ocean.

We no longer offer this project and now aim for projects with greater authenticity

Voice

\rightarrow Can students express their unique values, background, and perspective?
\rightarrow We strive to allow voice even in a math project.

3. How can we develop an algorithm for admissions that is
consistent with our values?

Students are given a spreadsheet of 1000
hypothetical college applicants and create an algorithm to decide who should get reviewed by a limited number of human admissions officers.

Choice

\rightarrow Can students tailor the project to their interests?
\rightarrow Will there be variability in student presentations?
\rightarrow Example: students choose different contexts

Our Question

How can we provide the citizens of Flint, Michigan with clean water in the most efficient and least wasteful way possible?

Step 1: Declare Optimal Volume

Volume equation: $V=x^{2} h$
Substitute our volume value for "V": $64,800=x^{2} h$
Step 2: Write " h " in terms of " x " $64,800=x^{2} h$ $64,800 / x^{2}=*^{2} h / *^{2}$ $64,800 / x^{2}=h$

4. How can you design a water bottle that is least wasteful?

Students choose a context:

Flint Michigan, Puerto Rico hurricane, marathon, summer camp, office workers, other context of your choice.

Students use calculus to determine the shape of their water bottle that they believe is optimal.

Some groups chose rectangular prisms, cylinders, hexagonal prisms, etc.

We aim for projects that can be engaged at many levels

\rightarrow Our students have a wide range of backgrounds
\rightarrow Could the project be engaging to a college student? A professional? An elementary school student?

We aim for projects that can be engaged at many levels

Examples:

\rightarrow Water bottles
\rightarrow College admissions

- Solar panels

Stories of building projects

Start with news/events

Examples:
- College Admissions
- Carbon Storage

Start with a guiding question
Example:
- How much time do you
save by speeding?

Start with specific content

Examples:

- Piecewise functions
- Function transformations

Concluding thoughts

Building projects is difficult and time-consuming.
\rightarrow Implement the project yourself. The smallest details may trip you up.
\rightarrow Give students feedback well before a public product.
\rightarrow Integrate multiple disciplines, especially literacy and communication.
\rightarrow Support with content knowledge. Projects can inform what is worth practicing.
\rightarrow We'd love to work with you and help build engaging math projects.

Developing math projects that are authentic and allow student voice and choice

Paul E. Hand

Associate Professor
Math and Computer Science Northeastern University

Director, Tapia Camps
Tapia Center
Rice University

