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A few words about myself…

- Harvard University (several summers)

• I’ve taught at a range of institutions:

- PhD, Univ. of Illinois-Urbana in 1994

- U.S. Air Force Academy  (1994-97)
- Kenyon College (in my 27th year)
- Carnegie Mellon University (sabbatical)

• I’m a Midwesterner!

- BA, Kent State University in 1987
- Ravenna High School in 1983



Quick Overview:

• Sample Project 1

• Context and Motivation

• Philosophy behind these projects

• A Brief mention of my use of projects in Abstract II

• Sample Project 2

• Sample Project 3

The bulk of my talk!



Some Background:

Kenyon offers a year-long sequence in Abstract Algebra

Algebra I: Groups   

(mostly students interested in math, physics, or CS and future teachers)

Abstract II: Rings and Fields (with a focus on Fields)
Or Rings and Fields (with a focus on Algebraic Geometry)

enrollment: ~10 students

enrollment: ~20 students

(mostly students interested in graduate study in math, physics or CS)



-- J. Lewis, “An Analysis of Students’ Difficulties in Learning Group Theory,”  2013. 
    

“Students often have difficulties relating activities such as 
creating tables and bijections (Weber and Larsen, 2004), 
performing calculations (Hazzan, 1999) and finding the 
order of elements to the group concepts pertaining to these 
activities. (Leron et al., 1995) Students will commonly use 
algorithms to solve problems without correlating them with 
their theoretical knowledge.”

What does the research say about the difficulty of 
Abstract Algebra?



“most college students do not succeed in understanding the 
concept of a quotient group.  Indeed, major difficulties for 
students seem to begin appearing with the introduction of 
cosets.”

-- E. Dubinsky, J. Dautermann, U. Leron, R. Zazkis
    “On Learning Fundamental Concepts of Group Theory,” 1994

What does the research say about the difficulty of 
Abstract Algebra?



My Initial Motivation for Creating Projects:  

•    Create environments in which students can experiment 
      and discover new ideas on their own (although not 
      entirely on their own; there are guiding exercises)

•    To reveal the purpose of abstract algebra; 
      by applying an algebraic framework to a "real world" 
      problem, students can see the power of the toolbox.

•    Create opportunities for students to gain intuition 
      about abstract objects



Example Project 1:
  “Product-free Sets in the Card Game SET”



Object of the Game:

There are a total of 𝟑𝟒 = 𝟖𝟏 cards in a SET deck.

Identify a “SET” among an array of 12 cards laid on the table.

Each card exhibits four characteristics:  
1.  Symbol:
2.  Color:
3.  Number:
4.  Filling:

Each card contains ovals, squiggles, or diamonds
The color of the symbols is red, green, or purple

There are 1, 2, or 3 symbols per card
The symbols are filled-in solid, unfilled, or striped



Three cards make up a SET if, for each of the four 
characteristics, all three cards either share the 
characteristic or each is different.

Example of a Set Example of a non-Set

All share color, number and symbol;
all differ in filling

Only 2 of the 3 share the solid filling



Let’s Play!



Color, symbol & shading the same; number different

SET!



Color & number the same; symbol & shading different

SET!



Shading the same; symbol, color & number different

SET!



Number the same; symbol, color & shading different

SET!



symbol, color, number & shading all differ

SET!



SET!

symbol, color, number & shading all differ



It’s possible to have no SET among the 12 cards
According to the instructions, among an initial 
layout of 12 cards,  𝑃(no	SET) 	= 	1/33.

If there is no SET among the 12 cards on the 
table, you lay out three more cards.
According to the instructions, among an initial 
layout of 15 cards,  𝑃(no	SET) 	= 	1/2500.

Question:  What is the maximum possible number of 
cards you can have producing no SET?



The Mathematical Framework

Labeling Symbol Color Number Filling

1 Oval Red One Solid

2 Squiggle Green Two Striped

0 Diamond Purple Three Outlined

Associate each card in the SET® deck with an element 
in the set 𝐷 = ℤ!×ℤ!× ℤ!× ℤ!

(0, 0, 0, 2) (2, 0, 2, 1) (0, 1, 2, 0) (1, 0, 1, 1)



Defining the Product of Two Cards
Given 𝑥 = (𝑥", 𝑥#, 𝑥$, 𝑥%) and 𝑦 = (𝑦", 𝑦#, 𝑦$, 𝑦%) in 𝐷, 
define 

𝑥𝑦 =
𝑥! + 𝑦!
2

mod	3,
	 𝑥" + 𝑦"

2
mod	3,

	 𝑥# + 𝑦#
2

mod	3,
	 𝑥$ + 𝑦$

2
mod	3

The Project: 
Exercise 1.  Suppose 𝑥 = 1, 1, 1, 1 , 𝑦 = 0, 0, 0, 0 , 𝑧 = (1, 2, 2, 0) 
and 𝑤 = 2, 2, 1, 1 .  Compute each of the products 𝑥𝑦, 𝑥𝑧, 𝑥𝑤, and 
𝑧𝑤 (symbolically), and then sketch the corresponding card to 
determine how this multiplication translates into cards.



The Project (continued): 

Exercise 2  Once you understand what it means to multiply two cards 
together, you might wonder if 𝐷 is a group under this multiplication.  
Let’s explore this question next.  Answer each of the following 
questions, providing proofs of each of your claims.
   a)  Is the multiplication on 𝐷 associative?
   b)  Is  the multiplication commutative?
   c)  Does 𝐷 contain an identity element?
   d)  Do inverses exist? 
Exercises 3-5 require students to prove several properties hold true, 
including the cancellation laws.  Students are also asked to translate 
the meaning of these properties into statements about cards.



Exercises 6-8 introduce a couple definitions:

• A 𝑫-set is defined to be a subset 𝑆 ⊆ 𝐷	of the form 
𝑆	 = {𝑥, 𝑦, 𝑥𝑦}, where 𝑥, 𝑦 ∈ 𝐷.

• A subset 𝑈 ⊆ 𝐷 is product-free if 𝑥𝑦 ∉ 𝑈 whenever 
𝑥, 𝑦 ∈ 𝑈.  

So 𝐷-sets correspond to SETs in the card game.

Product-free subsets of 𝐷 translate into collections of cards that fail
to contain a SET

Then students are asked to prove that if a subset 𝑈 is 
product-free, then 𝑥𝑈 = 𝑥𝑢 	𝑢 ∈ 𝑈} is product-free, as well. 

Our original question becomes: 
          What is the largest product-free subset of D?



Exercise 9. Prove that if 𝑆 ⊆ 𝐷 is a product-free set and
𝑥 ∈ 𝑆, then 𝑆 ∩ 𝑥𝑆 = {𝑥}. Conclude that any product-free 
set can contain at most 41 elements. (So any collection of 42 cards 
must contain a SET.)

Exercise 10 (An Optional Challenge). The size of the largest known 
collection of cards containing no Set is 20.  If we let 𝛼(𝐷) denote the 
size of the largest product-free subset of 𝐷, then this fact together 
with the result of the previous exercise yields 20 ≤ 𝛼(𝐷) ≤ 41.  Can 
you tighten the upper bound on 𝛼(𝐷) using the framework 
introduced in this project? That is, can you find an upper bound that 
is less than 41, or optimally, can you prove that 𝛼(𝐷)=20?

The last couple of exercises get the students thinking about the size, 𝛼 𝐷 , 
of the largest product-free subset of D… 



•    Illustrate the use of a Cartesian product

Goals of the SET Project: 

(Many students equate the Cartesian product with subsets of ℝ%)

•    Provide a nonstandard example of an algebraic structure, 
      encouraging students to make conceptual connections 

•    Give students practice working with coset-like objects 𝑥𝑆, 
      paving the way for future content

•    Demonstrate that meaningful binary structures can  
      fail to satisfy basic properties (associativity!)

•    Reveal the purpose of abstract algebra by applying an 
      algebraic framework to a "real world" problem



Example Project 2:
  “Exploring Rubik’s Cube with GAP”

Explores the transformation 
group of the Rubik’s cube 
using GAP (Groups, 
Algorithms and 
Programming) –  a program 
for computational discrete 
algebra



Start with a Labeling of the Cube:

The labeling will allow us to describe 
motions on the Rubik’s Cube in terms of 
permutations on the set of labels:  
                    {1, 2, 3, . . . , 48}.



Exercise 1:  Consider the motion described by:
 

  U :=  (1, 3, 8, 6) (2, 5, 7, 4) (9, 33, 25, 17) (10, 34, 26, 18)
           (11, 35, 27, 19) (12, 36, 28, 20) (13, 37, 29, 21) (14, 38, 30, 22) 
           (15, 39, 31, 23) (16, 40, 32, 24) (41, 46, 48, 43)(42, 44, 47, 45)
 

What motion does U represent?  
 

Answer:  A clockwise 90° 
rotation of the entire cube 
about the vertical axis



Exercise 2:  Suppose F denotes a clockwise turn of the front 
face of the cube.  Describe F as a permutation. 
 

F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)



Exercise 3: Determine a “natural” set of generators of the 
group of transformations of the Cube.  That is, find a set of 
motions that will enable you to create any attainable 
configuration of the Cube.  Then define (in GAP) each motion 
as a product of disjoint cycles. 
 F,  B, U, D, L, R

Before continuing, define a subgroup
 𝐻 ≤ 𝑆48	to be the group generated by the 
set of generators you defined in Exercise 3.

gap>  G:= SymmetricGroup(48);
gap>  H:= Subgroup(G, [U,D,R,L,F,B]);



Exercise 4:  Next we want to use GAP to explore what 
happens as a result of repeatedly applying a particular 
sequence of motions.  Let F denote a clockwise turn of the 
front face, and R a clockwise turn of the right face.  Evaluate 
the following permutations:
  a) {R2F2,  (R2F2)2, (R2F2)3, …}   
     (Can you find any “strategic maneuvers” among this list?        
      What is the order of R2F2?)

b) {RFR-1F-1,  (RFR-1F-1)2, (RFR-1F-1)3, …}
(What is the order of  RFR-1F-1?)

(R2F2)3 = (21, 36)(23, 39)(28, 29)(42, 47)  

(RFR-1F-1)3 = (6, 19)(8, 17)(11, 25)(24, 38)(30, 48)(32, 43)  



Exercise 5: When the original Rubik’s Cube came out, the 
Ideal Toy Company stated on its package that “there were 
more than three billion possible states the cube could 
attain.”   In his book, Innumeracy, J.A. Paulos described this 
claim as “analogous to McDonald’s proudly announcing that 
they’ve sold more than 120 hamburgers.”  Use GAP’s “Size” 
command to find the actual size of the Cube’s group of 
transformations. 

gap>  G:= SymmetricGroup(48);
gap>  H:= Subgroup(G, [U, D, R, L, F, B]);
gap>  Size(H);

43,252,003,274,489,856,000 elements!



Exercise 6:  
a) Next consider what happens when you repeatedly apply a 
cw turn of the right face followed by a cw turn of the front face.  
That is, evaluate the permutations {RF,  (RF)2, (RF)3,…}.  
What is the order of the cyclic subgroup generated by RF?  
b) Letting B represent a clockwise turn of the back face and L a 
clockwise rotation of the left face, what is the order of the subgroup 
generated by RFL? What is the order of the subgroup generated by 
RFLB? 
c) Choose your own sequence of motions to explore.  Do you think 
you can find a single sequence that will generate the entire 
transformation group of the Cube?  (That is, do you think the group 
of motions on the cube is cyclic?)



Exercise 7:  Finally we want to examine our initial set of 
generators.  Do you think that the set you defined in 
Exercise 3 is the smallest?  Explore this idea.  See if you can 
find a smaller set of generators.  (Note: In general, it is very 
difficult to find a minimal set of generators of a group. 
Nonetheless, GAP gives us the power to experiment with 
such questions.)
With some help from GAP, one can show that F can be expressed as: 
 U^2 B^3 R^2 B^3 D^2 B^3 D L^3 B L^3 D^3 R U B U^3 R^3 B U B^3 R U B R 
U^3 R^3 U^3 B^2 U D^3 L^3 B L D B^3 L^3 B^3 L U^3 B^2 U^3 B^2 U^3 R^3 
U R B U^2 B U B D B^3 U^3 B D^3 B^2 U B U^3 B^3 U^2 B^2 U L U^3 L^3 
B^2 U^3 B^3 R B R^3 U B U B^3 R^3 U^3 R U B U^3 B^3 U^3 B^3 R B R^3 B 
U B^2 R^3 U^3 R U B^3 D B^3 U^3 B D^3 B^3 U^3 B^3 U



• To build a better understanding of:
 -- permutations and permutation groups

      --  groups defined by generators
      --  cyclic groups 
      --  the order of an element

Goals of the Project: 

•    To reveal the purpose of abstract algebra by applying an 
      algebraic framework to a "real world" problem

•    To give students an opportunity and the means to 
      discover patterns, build intuition, and make conjectures.



Example Project 3:
  “Conjugation in Permutation Groups”

Explores the relationship 
between the cycle 
structure of a permutation 
and cycle structure of its 
conjugate;  Revisits 
permutations of the 
Rubik's cube.



Exercise 1.  Let G = S10 and h1, h2, h3, h4, and h5 be as defined by:
gap> h1: = (1, 2, 3);
gap> h2: = (2, 3)(5, 4, 7);
gap> h3: = (1, 2, 3)(8, 9, 10);
gap> h4: = (1, 2, 4)(5, 9);
gap> h5: = (4, 6, 7, 9);
Complete the tables given below. 

g1 (1, 2, 3, 4)(7, 8, 9)

h1*g1*h1-1

h2*g1*h2-1

h2*g1*h2-1

h2*g1*h2-1

h2*g1*h2-1

g2 (1, 4, 3, 2)(5, 7, 8)

h1*g2*h1-1

h2*g2*h2-1

h2*g2*h2-1

h2*g2*h2-1

h2*g2*h2-1

(1, 2, 4, 3)(7, 8, 9)

(1, 3, 2, 5)(4, 8, 9)

(1, 2, 4, 3)(7, 10, 8)

(1, 3, 2, 4)(5, 7, 8)

(1, 2, 3, 9)(6, 8, 7)

(1, 3, 4, 2)(5, 7, 8)

(1, 5, 2, 3)(4, 8, 7)

(1, 3, 4, 2)(5, 7, 10)

(1, 4, 2, 3)(7, 8, 9)

(1, 9, 3, 2)(5, 6, 8)



Exercise 1.  Let G = S10 and h1, h2, h3, h4, and h5 be as defined by:
gap> h1: = (1, 2, 3);
gap> h2: = (2, 3)(5, 4, 7);
gap> h3: = (1, 2, 3)(8, 9, 10);
gap> h4: = (1, 2, 4)(5, 9);
gap> h5: = (4, 6, 7, 9);
Complete the tables given below. 

g3 (1, 3)(7, 8, 9)

h1*g1*h1-1

h2*g1*h2-1

h2*g1*h2-1

h2*g1*h2-1

h2*g1*h2-1

g4 (1, 7)

h1*g2*h1-1

h2*g2*h2-1

h2*g2*h2-1

h2*g2*h2-1

h2*g2*h2-1

(2, 3)(7, 8, 9)

(1, 2)(4, 8, 9)

(2, 3)(7, 10, 8)

(3, 4)(5, 7, 8)

(1 3)(6, 8, 7)

(3, 7)

(1, 4)

(3, 7)

(4, 7)

(1, 6)



Exercise 2. GAP will actually allow you to look at all of the elements in S10 
that are conjugate to any given element.  For example, to get the list of 
conjugates of g5 you execute the following.  (Be patient!  This computation 
will likely take a while.)
gap> g5 := (1, 2, 5, 6); 
gap> c:= ConjugacyClass(G, g5);
gap> Elements(c);

What does the output of this code seem to indicate?  What can you say 
about the cycle structure of g5 compared to the cycle structure of each of 
its conjugates?



Exercise 3. Use GAP’s “Size” command to determine whether or 
not every four cycle in S10 is conjugate to g5.  Explain your 
reasoning.

Exercise 4. To summarize your findings, provide a conjecture 
about the relationship between a permutation g Î S10 and any 
conjugate h*g*h-1, where h Î S10.  Your homework assignment for 
next lesson is to prove (or disprove) this conjecture!

Size(c) = 1260
The number of distinct 4-cycles in S10 is  (10)(9)(8)(7)/4 = 
1260, so yes, every 4-cycle in S10 is conjugate to g5.

Most Common Conjecture:  The cycle structure of g is the same as 
the cycle structure of hgh-1; that is, conjugates have the same cycle 
structure.



Exercise 5. Returning to the Rubik’s Cube…  
 

Recall that the generators of the group of configurations of the 
Rubik’s Cube were described as:
   

F:=(17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(8,30,41,11);
R:=(25,27,32,30)(26,29,31,28)(3,38,43,19)(5,36,45,21)(8,33,48,24);
U:=(1,3,8,6)(2,5,7,4)(9,33,25,17)(10,34,26,18)(11,35,27,19);
B:=(33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(1,14,48,27);
D:=(41,43,48,46)(42,45,47,44)(22,30,38,14)(23,31,39,15)(24,32,40,16);
L:=(9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(6,22,46,35);
 

Find the permutation h in 𝑆$& having the property that U = h*F*h-1.  
That is, prove that U and F are conjugate.  Is ℎ in the Rubik’s Cube 
group?   
h = (1, 17, 41, 40)(2, 18, 42, 39)(3, 19, 43, 38)(4, 20, 44, 37)
       (5, 21, 45, 36)(6, 22, 46, 35)(7, 23, 47, 34)(8, 24, 48, 33)
       (9, 11, 16, 14)(10, 13, 15, 12)(27, 25, 30, 32)(26, 28, 31, 29)

This 
moves the 
Up face to 
the Front 
face



Students are encouraged to consider the difference between the conjugacy 
class of (R2D2)3 in the Rubik’s cube group versus the conjugacy class in 𝑆$&.

Exercise 6. 
Provide a geometric description of all elements in the conjugacy 
class of (R2D2)3 = (21, 36)(23, 39)(28, 29)(42, 47) in the Rubik’s 
Cube group.   



•    To introduce students to the notion of conjugation and            
      conjugacy classes

Goals of Project 3: 

•    To give students an opportunity and the means to 
      discover patterns, build intuition, and make conjectures.

•    To build the student’s understanding of conjugation 
      and cycle structure in 𝑆&



How do the Projects fit into my Course?
I am a proponent of active discovery learning environments.  
• Professors should be facilitators of knowledge and 

understanding;  they are there to guide and stimulate the 
students, and to create environments in which students 
discover new ideas on their own.

• Learning is more meaningful if the student is allowed to 
experiment on their own rather than listening to the professor 
lecture every lesson. 

• My course involves lecture, group work, student presentations, 
and projects.  There are weekly written assignments. 



How Class Time is Spent in Abstract Algebra
~ 30% - Students (individually) presenting proofs or 
    solutions to assigned theorems or exercises that 
    were solved outside of class
 

~ 28% - Class activities: 
    - Quiz based on reading
    - Guided problem-solving 
    - Students (often in groups) presenting proofs or 
      solutions to problems “on the spot”
 

~ 25% - Lecture (often driven by questions posed to class)
  

~ 12% - Projects (about 4-5 per semester)
 

~ 5%   - Hourly exams



My General Philosophy underlying these Projects
• They are designed to provide intuition and inspire 

experimentation and play

• Since the projects reinforce material already covered, they 
provide time and space for students who are having 
difficulty with concepts and proof-writing

• Projects are not meant to be difficult; most are (nearly) 
completed in class.  My focus in the course is on proof-
writing, which students find challenging.

• The break from abstraction can boost the spirits of 
students who are feeling like “an idiot”



𝐺/𝐻
ℎ𝑔ℎ!" 𝑥𝐻

𝐷"

Project 1 Project 2

𝑔



Exercise:  Imagine the strongest student(s) you have ever 
taught in Abstract Algebra.  Describe their background.

Student 1:  
Mother was a professional who 
worked A LOT; the student, an 
only child, taught himself to 
program at an early age and 
kept himself busy living in a 
computer-generated world.
He now has a PhD in math.

Student 2:  
Similar story, but not an only 
child…the student taught 
himself to program at an early 
age and spent many hours 
playing in a computer-generated 
world.  

These students had been living in the world of abstraction for years; they 
really don’t need the projects.  (Including an open-ended question or two 
at the end of the project will keep these folks engaged.)



A Few Words about Projects in Abstract Algebra II  

•    Lengthier writing assignments whereby students prove a 
   sequence of given statements to reach a desired result.

•    Computational assignments meant to teach students 
      computational content/methods (e.g., using Buchberger’s 
      Algorithm to compute Groebner bases)

Aimed at a different audience, my Abstract II projects differ 
in nature from the Abstract I projects…

•    Largely completed outside of class
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Thank you!



Note:  There is Better (Geometric) Framework for 
Analyzing SET…
Associate each card in the SET® deck with a point in the 
vector space

𝐷 = 𝐹$×𝐹$× 𝐹$× 𝐹$
Fact:  Three points 𝑎, 𝑏, 𝑐 ∈ 𝐹$% represent collinear points iff 
𝑎 + 𝑏 + 𝑐 = 0. 
So 3 cards making up a SET correspond to lines in 𝐹$%.  

The question becomes…
How big is the largest subset of 𝑭𝟑𝟒	containing no lines?
(This question was answered by Giuseppe Pellegrino in 1971.)


