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Introduction
• Advanced	mathematics	has	long	been	considered	an	essential	part	of	
the	mathematical	preparation	of	secondary	teachers.
• In	1932,	Felix	Klein	argued	that	it	was	important	for	teachers	to	view	
“elementary	mathematics	from	an	advanced	standpoint.”

• More	recently,	the	CBMS	(2012)	reiterated	this	argument	and	outlined	many	
specific	ways	in	which	this	might	occur:
• “It	would	be	quite	useful	for	prospective	teachers	to	see	how	C	can	be	built	
as	a	quotient	of	R[x]”	(p.	59).

• “[A]dvanced mathematics	serves	to	deepen,	and	more	rigorously	
confirm,	the	specific	mathematical	ideas	secondary	teachers	will	
teach”	(Wasserman,	2018,	p.	3).		



Introduction
• While	this	idea	seems	imminently	reasonable	in	theory,	it	has	proven	
considerably	difficult	to	implement	in	practice:
• “[A]	school	teacher’s	knowledge	of	advanced	mathematics,	such	as	abstract	

algebra,	[should]	translate	to	their	instructional	practice	in	some	way.	And	yet	
school	mathematics	teachers	should	not,	in	fact,	end	up	teaching	their	
students	abstract	algebra.	This	is	a	difficult	tension to	resolve”	(Wasserman,	
2017,	p.	81,	emphasis	added).



Introduction
• While	this	idea	seems	imminently	reasonable	in	theory,	it	has	proven	
considerably	difficult	to	implement	in	practice:
• “The	CBMS	(2012)	recommendations	for	the	mathematical	preparation	of	
teachers	[include]	statements	like,	‘it	would	be	quite	useful	for	prospective	
teachers	to	see	how	C can	be	built	as	a	quotient	of	R[x]’	(CBMS,	2012,	p.	59).	A	
very	reasonable	question	to	ask	in	response	to	such	a	statement	is	‘Why?’	
Abstract	algebra	certainly	provides	a	highly	sophisticated	perspective	on	a	
variety	of	secondary	mathematics	topics,	but	it	simply	does	not	follow	that	a	
teacher’s	pedagogical	practice	would	(or	even	could)	benefit	from	studying	
abstract	algebra.	Or	perhaps,	rather,	we	should	say	it	does	not	follow	simply.”	
(Larsen	et	al,	2018,	p.	74)



Introduction
• We	take	a	pragmatic	stance	in	this	debate:		
• “Basic	knowledge	of	group	theory	is	in	fact	neither	necessary	nor	
obligatory	for	addressing	the	(more	elementary)	mathematics.		
Nevertheless,	[…]	it	can	be	helpful”	(Zazkis &	Marmur,	2018,	p.	
379).

• “Any	exposure	to	or	instruction	about,	say,	abstract	algebra	
content,	is	not	innately	relevant	for	secondary	teachers	[…].		But	
that	is	not	the	same	as	claiming	that	it	cannot	be	beneficial”	
(Wasserman,	2018,	p.	6).

• Since	prospective	teachers	will	continue	to	be	required	to	take	
advanced	mathematics	courses,	let’s	focus	on	how	to	make	them	
as	useful	as	possible.



Introduction
• In	this	talk,	we	are	going	to	illustrate	one	way	we’ve	found	for	
making	advanced	mathematics	as	useful	as	possible	for	prospective	
teachers.
• The	name	of	this	approach	is	conceptual	analysis,	which	we’ll	talk	
about	here	in	a	minute.



Consider the following abstract algebra 
tasks



Consider the following abstract algebra 
tasks



The Main Point:
• These	tasks,	despite	having	little	obvious	relevance	for	secondary	
mathematics,	can	indeed	be	a	useful	opportunity	for	prospective	
teachers	to	make	connections	to	secondary	mathematics.
• “A	very	reasonable	question	to	ask	in	response	to	such	a	statement	
is	‘Why?’”	(Larsen	et	al.,	2018,	p.	74).

• Our	answer:		because	the	underlying	ways	of	reasoning	needed	to	
complete	these	tasks	mirror	ways	of	reasoning	that	are	productive	
in	secondary	mathematics.



Conceptual Analysis
• A	conceptual	analysis	is	an	explicit	description	of	the	ways	in	which	
someone	reasons	about	a	particular	mathematical	idea	(Thompson,	
2008).

• How	is	conceptual	analysis	useful	here?
• It	focuses	our	attention	on	the	underlying	ways	of	reasoning	
students	need	to	complete	tasks	(instead	of	on	surface-level	
differences	in	content)



Overview
• Present	conceptual	analyses	for	the	key	ideas	of	equivalence	and	
inverse	using	examples	from	secondary	mathematics

• Provide	excerpts	from	a	series	of	interviews	we	conducted	with	
prospective	teachers	in	which	they	use	these	ways	of	reasoning	
while	working	on	the	aforementioned	abstract	algebra	tasks	

• Conclude	with	practical	takeaways	for	those	who	teach	and	design	
these	courses



Conceptual analysis:  equivalence
• How	might	students	productively	interpret/reason	about	“A	is	
equivalent	to	B”?
• Common	characteristic:		A	and	B	are	equivalent	because	they	
share	a	key	characteristic	
• The	expressions	3(x+1)+1	and	3x+4	are	equivalent	because	they	
have	the	same	value

• Transformational:		A	and	B	are	equivalent	because	A	can	be	
transformed	into	B	using	a	set	of	allowed	rules/procedures
• The	expressions	3(x+1)+1	and	3x+4	are	equivalent	because	
distributing	3(x+1)+1	and	then	combining	like	terms	yields	3x+4



Conceptual analysis:  equivalence
• How	might	students	productively	interpret/reason	about	“A	is	
equivalent	to	B”?
• Common	characteristic:		A	and	B	are	equivalent	because	they	
share	a	key	characteristic	
• The	equations	3x+4=4	and	3x=0	are	equivalent	because	they	
share	the	same	solution	set

• Transformational:		A	and	B	are	equivalent	because	A	can	be	
transformed	into	B	using	a	set	of	allowed	rules/procedures
• The	equations	3x+4=4	and	3x=0	are	equivalent	because	
subtracting	4	from	both	sides	of	3x+4=4	yields	3x=0



Conceptual analysis:  inverse
• How	might	students	productively	interpret/reason	about	inverses?

• Inverse	as	an	undoing:		an	operation	is	applied	to	undo	the	effects	of	the	
previous	operation
• Multiplication	by	4	can	be	‘undone’	by	dividing	by	4

• Inverse	as	a	manipulated	element:		an	inverse	element	is	produced	by	
applying	a	suitable	procedure	to	the	given	element
• The	multiplicative	inverse	of	4	is	obtained	by	taking	the	reciprocal,	1/4

• Inverse	as	a	coordination:		attends	to	the	fact	that	the	combination	of	an	
element	and	its	inverse	with	respect	to	the	binary	operation	is	the	identity
• 4	and	¼	are	multiplicative	inverses	because	4*(1/4)=1



Conceptual analysis:  inverse
• How	might	students	productively	interpret/reason	about	inverses?

• Inverse	as	an	undoing:		an	operation	is	applied	to	undo	the	effects	of	the	
previous	operation
• For	f(x)=x+5,	since	f(3)=8,	then	f-1(8)=3.

• Inverse	as	a	manipulated	element:		an	inverse	element	is	produced	by	
applying	a	suitable	procedure	to	the	given	element
• Switching	and	solving:		x=y+5		<=>		y=x-5,	so	f-1(x)=x-5

• Inverse	as	a	coordination:		attends	to	the	fact	that	the	combination	of	an	
element	and	its	inverse	with	respect	to	the	binary	operation	is	the	identity
• f(x)=x+5	and	g(x)=x-5	are	inverse	functions	because	f(g(x))=x=g(f(x)).	



Conceptual analysis:  inverse
• How	might	students	productively	interpret/reason	about	inverses?

• Inverse	as	an	undoing:		an	operation	is	applied	to	undo	the	effects	of	the	
previous	operation
• For	f(x)=x+5,	since	f(3)=8,	then	f-1(8)=3.

• Inverse	as	a	manipulated	element:		an	inverse	element	is	produced	by	
applying	a	suitable	procedure	to	the	given	element
• Switching	and	solving:		x=y+5		<=>		y=x-5,	so	f-1(x)=x-5

• Inverse	as	a	coordination:		attends	to	the	fact	that	the	combination	of	an	
element	and	its	inverse	with	respect	to	the	binary	operation	is	the	identity
• f(x)=x+5	and	g(x)=x-5	are	inverse	functions	because	f(g(x))=x=g(f(x)).	



Overview
• Present	conceptual	analyses	for	the	key	ideas	of	equivalence	and	
inverse	using	examples	from	secondary	mathematics

• Provide	excerpts	from	a	series	of	interviews	we	conducted	with	
prospective	teachers	in	which	they	use	these	ways	of	reasoning	
while	working	on	the	aforementioned	abstract	algebra	tasks	
• Equivalence:		common	characteristic,	transformational
• Inverse:		undoing,	manipulated	element,	coordination

• Conclude	with	practical	takeaways	for	those	who	teach	and	design	
these	courses



UTILITY OF CONCEPTUAL ANALYSIS
Equivalence (Cook, Reed, & Lockwood, 2022)

Interpretation of 
equivalence Description

Examples from school mathematics
Algebraic expressions Algebraic equations

Common 
characteristic

Involves interpreting or 
determining the sameness of 
objects in terms of a feature 
that the objects share

Expressions “𝑓 and 𝑔 are equivalent 
[because] 𝑓 𝑥 = 𝑔(𝑥) for all 𝑥 in 
the common domain” (Solares & 
Kieran, 2013, p. 122). 

Equations are equivalent when 
they share the same solution set 
(e.g., Alibali et al., 2007). 

Transformational Involves interpreting or 
determining equivalence on 
the basis that one object can 
be manipulated into the other 
pursuant to an established 
procedure or set of actions, 
rules, or properties 

Expressions are equivalent if one can 
be transformed into the other by using 
certain algebraic rules (e.g., 
Zwetzschler & Prediger, 2013). 

Equations are considered 
equivalent when one can be 
manipulated into the other 
according to certain algebraic 
rules
(e.g., Baiduri, 2015). 



UTILITY OF CONCEPTUAL ANALYSIS
Equivalence

Task 1.1: Is 𝜙:ℚ → ℤ given by 𝜙 ,
-
= 𝑎 + 𝑏 a function? Explain.

No,	because,	for	example:

𝜙
1
2

= 1 + 2 = 3

𝜙
2
4

= 2 + 4 = 6



UTILITY OF CONCEPTUAL ANALYSIS
Equivalence

Task 1.2: Is 𝑔:ℚ → ℚ given by 𝑔 ,
-
= ,F-

-
a function? Explain.

Yes,	because:

𝑔
𝑎
𝑏

=
𝑎 + 𝑏
𝑏

𝑔
𝑎
𝑏

=
𝑎
𝑏
+
𝑏
𝑏

𝑔
𝑎
𝑏
	=

𝑎
𝑏
+ 1



UTILITY OF CONCEPTUAL ANALYSIS
Equivalence

Task 1.3: Is 𝑓: ℤH → ℤ given by 𝑓 𝑎 H = 𝑎 a function? Explain.
No,	because,	for	example:

𝑓 1 H = 1

𝑓 5 H = 5



EQUIVALENCE: COMMON 
CHARACTERISTIC

“Two over three, well, that’s the same thing as four over six, 
but they would map to a different element. […] And so now 
you no longer have a function […] because […] 2/3 and 4/6 
are essentially equivalent.”

“I think of equivalence as, as I am comparing this object 
[…] with this object […] and I'm just seeing if there's one 
property that they share in common. And if they have that 
property in common, then I would say that they're 
equivalent.”

“they might not look the same but they have the same 
property”

Task 1.1: Is 𝜙:ℚ → ℤ given by 𝜙 ,
-
= 𝑎 + 𝑏 a function?

𝜙
4
6

= 4 + 6 = 10



EQUIVALENCE: COMMON 
CHARACTERISTIC

“I would maybe see if, like, some sort of element would map to two different elements, 
right? And in this case, I would probably pick an element that is ‘equivalent.’ So I could 
probably pick like 1/3 or something. I guess I would maybe do it like 𝑔(1/3) […] which 
is 4/3. And then see if I can find something that’s like kind of equivalent to 1/3. So maybe 
like 𝑔(2/6) […] which would be 8/6. […] 4/3 is the same thing as 8/6.”

Task 1.2: Is 𝑔:ℚ → ℚ given by 𝑔 ,
-
= ,F-

-
a function?



EQUIVALENCE: COMMON 
CHARACTERISTICTask 1.3: Is 𝑓: ℤH → ℤ given by 𝑓 𝑎 H = 𝑎 a function? 

“You have 0, 4, 8 or whatever. They’re all the exact 
same thing in ℤH, but in my outputs I’m getting different 
values […] So that would be my reasoning to say like, 
oh, like, bam, no, not a function”

“With four, then they're all the same thing. So like zero, 
and four, and eight, you know, they're all evenly 
divided by four.”

“Kind of like the Example 1 […] how I was, you know, 
picking fractions that ultimately looked different but 
represented the same thing, or the same property or 
those sameness, or whatever. I wanted to do the exact 
same thing in this case. You know, 0 and 4, obviously, 
in Z mod 4, they're both zero. They're the exact same 
thing even though they look different.”



EQUIVALENCE: 
TRANSFORMATIONAL

“I could reduce one or think of them [the 
fractions 2/3 and 4/6] as the same thing”

To identify if elements are equivalent: “take a 
fraction and you see if you can simplify it all 
the way down”

“ultimately I could reduce one or think of them 
as the same thing.” 

Task 1.1 Is 𝜙:ℚ → ℤ given by 𝜙 ,
-
= 𝑎 + 𝑏 a function?

4
6
=
2
2
2
3

=
2
3



EQUIVALENCE: 
TRANSFORMATIONALTask 1.3: Is 𝑓: ℤH → ℤ given by 𝑓 𝑎 H = 𝑎 a function? 

“0 in ℤH is the same thing [as] 4 in ℤH, 
right? […] You know, I’m just, it’s kind of 
like those fractions. We kind of reduce them 
down [using repeated addition/subtraction 
of the modulus 4].”



UTILITY OF CONCEPTUAL ANALYSIS
Equivalence

• Ways of reasoning that support productive engagement with such tasks in abstract 
algebra mirror (and can thus reinforce) the same ways of reasoning needed to 
reason productively about equivalence in secondary mathematics.
• Common characteristic

• ℚ: shared value of quotients when dividing numerator by denominator
• ℤH: shared remainders after division by 4

• Transformational
• ℚ: fraction reduction, i.e., division of numerator and denominator by their 

GCD
• ℤH: repeated addition/subtraction of modulus 4



UTILITY OF CONCEPTUAL ANALYSIS
Inverse (Cook et al., 2022)
Way of 

reasoning Description
Examples from school mathematics

Multiplicative inverses in ℝ Compositional inverses of 
functions

Inverse as an 
undoing

“inverse is associated with an 
operation that cancels the previous 
operation and ‘returns to the starting 
point’” (Zazkis & Kontorovich, 2016, 
p. 107)

“An inverse is something that will return you 
to the starting point. Let’s say I pushed the 
wrong button on the calculator and multiplied 
by 5. For correcting this, I need to divide by 
5” (Kontorovich & Zazkis, 2017 p. 31).

An inverse function is “the 
operation needed to go in the 
reverse direction, from the final 
state to the initial state” 
(Vergnaud, 2012, p. 441). 

Inverse as a 
manipulated 

element

Viewing inverse in terms of a 
procedure by which an element is 
changed into its inverse element.

The multiplicative inverse of any nonzero 
real number can be found by taking its 
reciprocal (e.g., Clay et al., 2012).

An inverse function can also be 
viewed in terms of “switching the 
𝑥 and 𝑦 variables and solving for 
𝑦” (Pinto & Schubring, 2018, p. 
900). 

Inverse as a 
coordination

Conceiving of inverse as a relationship 
between two elements such that the 
combination of those two elements via 
the relevant binary operation yields the 
identity element. 

“We remember multiplication if we take a 
number and multiply it by its multiplicative 
inverse you will get the multiplicative 
identity 1.” (Clay et al., 2012, p. 769).

The composition of a function 
with its inverse function yields 
the identity function (e.g., 
Vidakovic, 1996).



UTILITY OF CONCEPTUAL ANALYSIS
Inverse (Uscanga & Cook, 2017)

PSTs (Josh and Meagan) explored the algebraic structure of ℤM[𝑖] (the finite field of 
order 9).

Task 2.1: Prove: for all 𝑎, 𝑏 ∈ ℤM[𝑖], all equations of the form 𝑎 + 𝑥 = 𝑏 have a unique 
solution in ℤM[𝑖].

Task 2.2: Prove: for all 𝑎 ∈ ℤM[𝑖]\{0} and 𝑏 ∈ ℤM[𝑖], all equations of the form 𝑎𝑥 = 𝑏
have a unique solution in ℤM[𝑖].



INVERSE: UNDOING
Task 2.1: Prove all equations of the form 𝑥 + 𝑎 = 𝑏 have a unique solution in ℤM 𝑖 .

• When attempting to identify a solution candidate (the ‘existence’ part of the 
proof), Josh transformed 𝑥 + 𝑐 + 𝑑𝑖 = (𝑎 + 𝑏𝑖) into	𝑥 = 𝑎 − 𝑐 + (𝑏𝑖 − 𝑑𝑖).
• Josh: “you add the inverse of [𝑐 + 𝑑𝑖 ]”
• Inverse as an undoing: using algebraic manipulation to undo an operation

Meagan: We would be able to eliminate, um, the 𝒄 + 𝒅𝒊.
Researcher: Mmhmm.
Meagan: We would be able to get 𝑥 by itself, so then we could solve.
Researcher: What do you mean by eliminate?
Meagan: Um, getting rid of, or, like, um, oh gosh.
Josh: Like cancelling it out.
Meagan: Cancelling it out. So then you could get 𝑥 by itself.



INVERSE: MANIPULATED ELEMENT
Task 2.1: Prove all equations of the form 𝑥 + 𝑎 = 𝑏 have a unique solution in ℤM 𝑖 .
• When asked how they could be sure that such an element −𝑐 − 𝑑𝑖 existed for each element 𝑐 +

𝑑𝑖 in ℤM[𝑖], Josh responded that “you multiply it by negative one” and then “simplify it from 
there”, i.e.:
1) Start with an element
2) Multiply it by -1
3) Use congruence mod 3
4) The result is the inverse element

Inverse as a manipulated element: viewing the inverse relationships in terms of inverse elements
that were obtained by manipulating the original element via a procedure

Multiply by -1

Use congruence mod 3

{

{

Multiply by -1

Use congruence mod 3



INVERSE: COORDINATION
Task 2.2: Prove: for all 𝑎 ∈ ℤM[𝑖]\{0} and 𝑏 ∈ ℤM[𝑖], all equations of the form 𝑎𝑥 = 𝑏
have a unique solution in ℤM[𝑖].

Meagan’s multiplication table for ℤM[𝑖] in which she circles 
pairs of elements that multiply to produce 1

Meagan: Oh! Okay!

Josh: Ok, yeah. It’s all you.

Meagan: Oh my gosh! Because we just said 
anything times itself should equal 1, right? 
So we have all the ones that equal 1. One, one, 
one, one. [She begins circling all the 1’s that 
appear as entries in the multiplication 
table].

Researcher: You said that anything times itself 
should equal 1?

Meagan: Ok, not times itself. Lightbulb! Ok, 
so [...] any number times its inverse should 
equal 1.



Meagan’s multiplication table for ℤM[𝑖] in which she circles 
pairs of elements that multiply to produce 1

Inverse as a coordination
Josh: “So basically everywhere that we 
get a 1, because of our table, those are 
going to be the inverse pairs.”

Binary operation: focus on pairs of 
elements that multiply to yield the 
multiplicative identity, 1

Identity: recognizing that multiplying 
inverse elements yield the identity, 1

Set: recognizing that an element and its 
inverse are both in ℤM 𝑖

INVERSE: COORDINATION
Task 2.2: Prove: for all 𝑎 ∈ ℤM[𝑖]\{0} and 𝑏 ∈ ℤM[𝑖], all equations of the form 𝑎𝑥 = 𝑏
have a unique solution in ℤM[𝑖].



Discussion
• Though	advanced	mathematics	might	not	be	inherently	useful	for	
teaching	secondary	mathematics,	we	should	work	to	make	advanced	
mathematics	courses	as	useful	as	possible

• Our	approach:		conceptual	analysis
• Equivalence:		common	characteristic,	transformational
• Inverse:		undoing,	manipulated	element,	coordination

• The	ways	of	reasoning	about	equivalence	and	inverses	that	were	
useful	in	completing	tasks	in	advanced	mathematics	mirror	those	
needed	reason	productively	in	secondary	mathematics







Discussion
• Key	takeaway:		rather	than	focusing	on	surface-level	differences	in	
content,	let’s	focus	instead	on	the	underlying	ways	of	reasoning	
• Lots	of	resources	in	the	mathematics	education	literature	about	
productive	ways	of	reasoning	for	particular	topics

• Future	work:		here	we	have	outlined	our	image	of	potential	
connections	prospective	teachers	might	be	able	to	make	by	
attending	to	similarities	in	their	ways	of	reasoning.		But	we	haven’t	
yet	studied	how	this	might	work	and	what	kinds	of	connections	and	
commonalities	prospective	teachers	themselves	might	actually	
attend	to.		
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