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Physical assumptions

Mathematical expressions (DEs)

Think before you solve


Equilibrium solutions

Graphical analysis


Slopefields, Phase Planes, etc

Analytical Solutions

jm Class Approach



Professional Software 

Maple/Mathematica/MATLAB 

Learning Curve/Syntax

Expensive


Free Software

dfield/pplane


Less support for Java

GeoGebra/Desmos


Not designed for Diff Eq

Most produce static images

jm Obstacles to Visualization



Languages: Swift and Kotlin

Platforms: iOS and Android

http://slopesapp.com  (ODE)


iPad Release: Nov 2016

iPhone Release: July 2017

Macs with M Chips: Nov 2020

Android Release: Jan 2020


http://wavespdeapp.com  (PDE)

iOS Release Date: June 2019

jm App Information
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Portable

Comparatively large screen

Tactile interface

The Role of iPads in Constructing Collaborative 
Learning Spaces (Fisher, Lucas and Galstyan, 2013)

jm Why Mobile Devices?



Inquiry and active engagement are 
important in mathematics education 
(IODE, CBMS)

Mathematical learning is 
conversational (Ernest, 1994)

Tools (i.e. Slopes) create 
collaborative classroom spaces

Using Slopes to Enhance Learning in Ordinary 
Differential  Equations (K. Lucas and T. Lucas, 2022)

jm Study Framework



A bifurcation occurs when a small change 
in a parameter value leads to a qualitative 
change in the long term behavior of the 
solution to a differential equation. 

jm Bifurcation



jm Local Ecology 

California Newt - Taricha torosa




jm Invasive Crayfish

Procambarus clarkii




jm Crayfish Models

Exponential Growth/Decay:   y’ = ay

Exp Growth w/ Removal:   y’ = ay - c

Same graph with shifted equilibrium



jm Class Activities

Observations while Using Slopes

What do the arrows represent?

What patterns do you observe?

How do those patterns relate to the model 
and differential equation?

What is the relationship between the arrows 
and the solution curves?

Describe the behavior of the solutions for 
various initial values.

Are there any equilibrium solutions?

Use the plot to describe the stability of the 
equilibrium.

What happens as you vary parameters?



jm Crayfish Models

Logistic Growth:   y’ = ay(1-y/b)

One stable, one unstable equilibrium



jm Crayfish Models

Logistic Growth with Constant 
Removal:   y’ = ay(1-y/b) - c

Increase c, 2 equilibria become 0



jm Crayfish Models

Logistic Growth with Proportional 
Removal:   y’ = ay(1-y/b) - cy

Increase c, equilibria switch stability
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Below is a discussion about the equilibrium 
solutions in the threshold model.


JAMES: So it would be anything greater than four.

ALEX: Ten, four, and zero.

JAMES: And then four is unstable…It's like the 
opposite of a carrying capacity.

DOMINIC: It's a threshold, right?

JAMES: Oh yeah, it is. So if you're above the 
threshold, then you go to the carrying capacity.

DANIEL: If you're below, you're going to go to zero.

ALEX: It's like the minimum population you need to 
not die out.

jm Class Activities



jm Damped Oscillations

Mass-Spring System: ay’’+by’+cy=0

Transitions from undamped to 
underdamped to overdamped as b 
increases



jm Van der Pol Oscillator

x’=y,    y’=-x+a(1-x^2)y

Equilibrium point changes as a increases
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jm Van der Pol Oscillator

x’=y,    y’=-x+a(1-x^2)y

Equilibrium point changes as a increases

        a=0.5                   a=1                     a=3
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Main Goal: Understand and analyze a 
mathematical model using techniques 
learned in class


Slopefields/Phase Planes, Equilibrium 
Analysis, Numerical/Algebraic 
Solutions, ...


Teams of 3-4 Students

Final Poster Presentation 


Judged by math and science faculty

Images provided by Slopes

jm Semester Projects
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Printing:
Mountain Lions vs. Deer

Three Models Examining Predator Prey Dynamics

Background
Over the last 16 months, Pepperdine has issued 17 warnings regarding mountain lions 
spotted on campus. In an effort to understand the dynamics behind this rise in sightings (and 
the Malibu ecosystem in general), we use predator/prey systems of differential equations. 
Within California, mountain lions feed primarily on deer, and deer are preyed on primarily 
by mountain lions. Given the omnipresent nature of deer on campus, this likely extends to 
our local ecosystem. We aim to better understand this relationship, we compare three 
predator/prey models with increasing complexity. 

Basic Model and Coefficient Estimates
In its most nascent form, our model includes two species (mountain lions and deer), and 
models deer using exponential growth. The variables x and y represent deer (prey) and 
mountain lion (predator) populations, respectively. The equations are displayed below.

!" = $! − &!'
'" = −(' + *!'

Coefficients:

While the true values of some parameters are unknown, zoological research can be used to 
guide many of these choices:
• Deer’s maximum growth rate is estimated using reproduction statistics. 

• At any given time, 66% of female deer are pregnant. Deer have an average litter size 
of 1.9, are pregnant for about 203 days, and exhibit balanced sex ratios. 

• If we observed a deer population and returned 203 days later, we would therefore 
expect to see 62.7% more deer. Therefore, without external constraints the 
population will grow according to the equation x = (,-./012 , with c denoting the 
starting population, and t denoting change in time (in years). 

• The location of equilibriums is estimated using food intake requirements.
• Should the growth in the deer population produce exactly the amount of meat 

required to sustain the mountain lion population, no change should occur in either.
• The average mountain lion requires 6.57 pounds of meat per day to survive. As the 

average mule deer weighs 177 pounds, with at most 133 pounds being edible 
biomass, a mountain lion’s survival requires 0.049 deer per day, which is 18.0 per 
year. 

First Model Behavior
The phase plane has two equilibrium points: a saddle point at (0,0) and a center at (c/d, a/b). 
Only in cases of complete extinction and at (c/d, a/b) are both populations at rest. A phase 
plane is shown below, along with a graph of each population. Coefficients were informed by 
the research described above. Except in the case when an initial value is zero, populations 
continuously orbit around the center. 

Logistic Growth and Ratio Dependence
Our second model introduces the concepts of logistic growth and density dependence. The 
equations are displayed below.

!" = $! 1 − !4 − &!'
1 + 5! + '

'" = −(' + *!'
(1 + 5! + ')

Logistic growth is introduced by the addition of (1-x/k) to the part of the equation controlling 
deer growth. This takes resource scarcity into account, and ensures that the deer population 
do not expand beyond its carrying capacity (k). The importance of this feature is highlighted 
by a potential behavior observable in the first model: without mountain lions the deer 
population will expand infinitely. While California’s natural carrying capacity for deer is an 
unexpectedly contentious topic, the deer population peaked at approximately 2 million before 
declining substantially to its current level of 540,000. 
Density dependence is introduced by the denominator now beneath both interaction terms. 
The effect of this change is best explained by an example. Say that an environment has 100 
deer and 1 mountain lion. Say that a second environment has 10 deer and 10 mountain lions. 
Under our first model, both interaction terms end up the same: 100 times some interaction 
coefficient. This is obviously a departure from how deer and mountain lions interact in 
reality. Thus, the new model makes the effectiveness of predation dependent on this ratio 
between species. The most effective ratio can be determined using the value the coefficients 
(in this case just f, as one can always be omitted). For example, if f = 1, the second 
environment would yield a larger interaction term under the new model. 
To ensure comparability between models, values of coefficients representing biological 
constants (a, c) remain unchanged from the previous model, and interaction coefficients (b, 
d) are appropriately scaled to adjust for the new terms. 

The phase plane of the second model is shown below. As the model is not linear, the 
Jacobian (matrix below) serves as a useful linear approximation.

Second Model Behavior

Adding a Third Species

Third Model Behavior

While all three models share similar equilibrium points (between mountain lions and deer), 
behavior around these points differs substantially between models. Furthermore, each 
addition of complexity made our models more fragile. While both species refused to die in 
the first model, far more scenarios involved extinction in the third model. This could be due 
to the nature of natural ecosystems, or the nature of mathematical models. 

Dubey, B., and Upadhyay, R.K. Persistence and Extinction of One-Prey and Two-Predators System. Nonlinear Analysis: Modeling and Control. 2004, 
Vol 9, No. 4. 

Green et. al., Reproductive Characteristics of Female White-Tailed Deer, Theriogenology, Volume 94, 2017.
Longhurst et. al., The California Deer Decline and Possibilities for Restoration, California Nevada Wildlife Transactions, Wildlife Society, 1976.

Pettorelli et. al., Predation, Individual Variability and Vertebrate Population Dynamics, Oecologia, 2011.
Pierce, Becky et. al. Selection of Mule Deer by Mountain Lions and Coyotes: Effects of Hunting Style, Body Size, and Reproductive 

Status.” 2000. Journal of Mammalogy, Volume 81, Issue 2. 
Xiao, Dongmei and Ruan, Shigui. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 2000. 

a Rate of growth without predation.
b Rate at which predation (interactions) decreases deer population.
c Rate at which mountain lions die without prey.
d Rate at which predation (interaction) increases mountain lion population.

When compared to empirical data, it becomes clear that both models discussed though this 
point are incomplete. Just 5,000 wild mountain lions roam California—well below what our 
two-species model predicts. While a wildlife policy of suppressing dangerous mountain lions 
while protecting deer from predation is likely the largest culprit, it is also worth considering 
other interactions within our ecosystem. Our third and final model maintains the concepts 
discussed in its antecedent while adding a third species: coyotes. The equations are displayed 
below, with y1 denoting mountain lions and y2 denoting coyotes.

!" = $! 1 − !4 − &8!'8
1 + 5! + '8 + 9':

− &:!':
1 + 5! + '8 + 9':

'8" = −(8'8 −;'8': +
*8!'8

1 + 5! + '8 + 9':
':" = −(:': − <'8': +

*:!':
1 + 5! + '8 + 9':

Most	new	parameters	are	direct	extensions	of	the	previous	model	(b2,	c2,	d2).	The	new	
term	gy2 in	each	denominator	generalizes	the	ratio	to	consider	all	three	species.	New	
interaction	terms	between	mountain	lions	and	coyotes	are	also	included	(my1y2,	ny1y2).	
Coyotes live in the same environments as mountain lions, and consume the same prey (deer). 
As mountain lions and coyotes are directly antagonistic to each other (beyond the indirect 
effects of consuming deer), both coefficients are negative. As mountain lions are far larger 
predators than coyotes (137 pounds vs 31 pounds), it can be assumed that n is the larger 
coefficient. 

a = 0.875, b = 0.02, c = 0.2, d = 0.000265

Initial Conditions: Deer = 600, Mountain Lion = 40

Equilibrium points: (755, 44), (0,0)

Conclusion, Sources

Y$(Z&[$< $\ 0,0 : 0.87 0
0 −0.2 , λ1= 0.87, λ2= -0.2 (unstable, saddle)

Y$(Z&[$< $\ 755, 44 : 0 −15.1
−0.012 0 , λ1= 0.417i, λ2= −0.417i (unstable,

non−generic , (Z<5[c;,* as center using numerical methods.)

$ − 2$!
4 − &'(' + 1)

(5! + ' + 1):
−&!(5! + 1)
(5! + ' + 1):

*'(' + 1)
(5! + ' + 1): −( + *!(5! + 1)

(5! + ' + 1):

Parameters:

a = 0.875, b = 1.8, c = 0.2, 

d = 0.1, f = 0.44, k = 1000

Equilibrium points: (757, 44), (0,0), (1000, 0)

Jacobian:

A plot of all three populations is shown below. Using our starting conditions and 
parameters (as well as reasonable variations thereof), the mountain lions (green) and 
coyotes (blue) engage in conflict, suppressing the population of each. The mountain lions 
eventually win, sending the coyotes into extinction. A numeric solver was used to find the 
equilibrium that all three species approach. 

Parameters:
a = 0.875, b1 = 1.8, b2 = 1.8, 
c1 = 0.2, c2 = 0.1, f = 0.44, 
k = 1000, m = 0.007, n = 0.017, 
d1 = 0.1, d2 = 0.092, g = 2
Equilibrium: The deer population approaches 
759.7, the mountain lion population approaches 
44.5, and the coyote population approaches 
extinction. 

Using this Jacobian, the equilibrium points can be categorized. The Jacobian for the only 
equilibrium where both species survive is shown below, along with the useful indicators it 
provides. 

J = −0.45896 −3.1775
0.0014 −0.2347

λ1= −0.257
λ2= −0.437

\c Y = −0.694
*,\ Y = 0.112

This makes (757, 44) a nodal sink (stable). Using the same techniques, (0,0) and (1000, 0) 
can both be categorized as saddle points. 
When initial populations are non-zero, they will eventually sink into a single equilibrium of 757 
deer and 44 mountain lions. Unlike the previous model, the equilibrium is always approached 
(nodal sink) rather than circled around (center). 
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Logistic growth is introduced by the addition of (1-x/k) to the part of the equation controlling 
deer growth. This takes resource scarcity into account, and ensures that the deer population 
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Under our first model, both interaction terms end up the same: 100 times some interaction 
coefficient. This is obviously a departure from how deer and mountain lions interact in 
reality. Thus, the new model makes the effectiveness of predation dependent on this ratio 
between species. The most effective ratio can be determined using the value the coefficients 
(in this case just f, as one can always be omitted). For example, if f = 1, the second 
environment would yield a larger interaction term under the new model. 
To ensure comparability between models, values of coefficients representing biological 
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Second Model Behavior
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Third Model Behavior

While all three models share similar equilibrium points (between mountain lions and deer), 
behavior around these points differs substantially between models. Furthermore, each 
addition of complexity made our models more fragile. While both species refused to die in 
the first model, far more scenarios involved extinction in the third model. This could be due 
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Dubey, B., and Upadhyay, R.K. Persistence and Extinction of One-Prey and Two-Predators System. Nonlinear Analysis: Modeling and Control. 2004, 

Vol 9, No. 4. 

Green et. al., Reproductive Characteristics of Female White-Tailed Deer, Theriogenology, Volume 94, 2017.

Longhurst et. al., The California Deer Decline and Possibilities for Restoration, California Nevada Wildlife Transactions, Wildlife Society, 1976.

Pettorelli et. al., Predation, Individual Variability and Vertebrate Population Dynamics, Oecologia, 2011.

Pierce, Becky et. al. Selection of Mule Deer by Mountain Lions and Coyotes: Effects of Hunting Style, Body Size, and Reproductive 
Status.” 2000. Journal of Mammalogy, Volume 81, Issue 2. 

Xiao, Dongmei and Ruan, Shigui. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 2000. 

By Jeremiah Rondeau, Rachel Simmons, Jacob Zimbelman

a Rate of growth without predation.
b Rate at which predation (interactions) decreases deer population.
c Rate at which mountain lions die without prey.
d Rate at which predation (interaction) increases mountain lion population.

When compared to empirical data, it becomes clear that both models discussed though this 
point are incomplete. Just 5,000 wild mountain lions roam California—well below what our 
two-species model predicts. While a wildlife policy of suppressing dangerous mountain lions 
while protecting deer from predation is likely the largest culprit, it is also worth considering 
other interactions within our ecosystem. Our third and final model maintains the concepts 
discussed in its antecedent while adding a third species: coyotes. The equations are displayed 
below, with y1 denoting mountain lions and y2 denoting coyotes.

!" = $! 1 − !4 − &8!'8
1 + 5! + '8 + 9':

− &:!':
1 + 5! + '8 + 9':

'8" = −(8'8 − ;'8': +
*8!'8

1 + 5! + '8 + 9':
':" = −(:': − <'8': +

*:!':
1 + 5! + '8 + 9':

Most	new	parameters	are	direct	extensions	of	the	previous	model	(b2,	c2,	d2).	The	new	term	gy2 in	each	denominator	generalizes	the	ratio	to	consider	all	three	species.	New	interaction	terms	between	mountain	lions	and	coyotes	are	also	included	(my1y2,	ny1y2).	
Coyotes live in the same environments as mountain lions, and consume the same prey (deer). 
As mountain lions and coyotes are directly antagonistic to each other (beyond the indirect 
effects of consuming deer), both coefficients are negative. As mountain lions are far larger 
predators than coyotes (137 pounds vs 31 pounds), it can be assumed that n is the larger 
coefficient. 	

a = 0.875, b = 0.02, c = 0.2, d = 0.000265

Initial Conditions: Deer = 600, Mountain Lion = 40

Equilibrium points: (755, 44), (0,0)

Conclusion, Sources

Y$(Z&[$<	$\	 0,0 :	 0.87 0
0 −0.2 , λ1= 0.87, λ2= -0.2 (unstable, saddle)

Y$(Z&[$<	$\	 755, 44 :	 0 −15.1
−0.012 0 , 	λ1= 0.417i, λ2= −0.417i (unstable, 

non−generic, (Z<5[c;,*	as center using numerical methods.)

$ − 2$!4 − &'(' + 1)
(5! + ' + 1):

−&!(5! + 1)
(5! + ' + 1):

*'(' + 1)
(5! + ' + 1): −( +	 *!(5! + 1)(5! + ' + 1):

Parameters:

a = 0.875, b = 1.8, c = 0.2, 
d = 0.1, f = 0.44, k = 1000

Equilibrium points: (757, 44), (0,0), (1000, 0)

Jacobian:

A plot of all three populations is shown below. Using our starting conditions and 
parameters (as well as reasonable variations thereof), the mountain lions (green) and 
coyotes (blue) engage in conflict, suppressing the population of each. The mountain lions 
eventually win, sending the coyotes into extinction. A numeric solver was used to find the 
equilibrium that all three species approach. 

Parameters:

a = 0.875, b1 = 1.8, b2 = 1.8, 

c1 = 0.2, c2 = 0.1, f = 0.44, 

k = 1000, m = 0.007, n = 0.017, 

d1 = 0.1, d2 = 0.092, g = 2

Equilibrium: The deer population approaches 
759.7, the mountain lion population approaches 
44.5, and the coyote population approaches 
extinction. 

Using this Jacobian, the equilibrium points can be categorized. The Jacobian for the only 
equilibrium where both species survive is shown below, along with the useful indicators it 
provides. 

J = −0.45896 −3.1775
0.0014 −0.2347

λ1= −0.257
λ2= −0.437										

\c Y = −0.694
*,\ Y = 0.112

This makes (757, 44) a nodal sink (stable). Using the same techniques, (0,0) and (1000, 0) 
can both be categorized as saddle points. 
When initial populations are non-zero, they will eventually sink into a single equilibrium of 757 
deer and 44 mountain lions. Unlike the previous model, the equilibrium is always approached 
(nodal sink) rather than circled around (center). 



`

Printing:

Mountain Lions vs. Deer

Background
Over the last 16 months, Pepperdine has issued 17 warnings regarding mountain lions 
spotted on campus. In an effort to understand the dynamics behind this rise in sightings (and 
the Malibu ecosystem in general), we use predator/prey systems of differential equations. 
Within California, mountain lions feed primarily on deer, and deer are preyed on primarily 
by mountain lions. Given the omnipresent nature of deer on campus, this likely extends to 
our local ecosystem. We aim to better understand this relationship, we compare three 
predator/prey models with increasing complexity. 

Basic Model and Coefficient Estimates
In its most nascent form, our model includes two species (mountain lions and deer), and 
models deer using exponential growth. The variables x and y represent deer (prey) and 
mountain lion (predator) populations, respectively. The equations are displayed below.

!" = $! − &!'
'" = −(' + *!'

Coefficients:

While the true values of some parameters are unknown, zoological research can be used to 
guide many of these choices:
• Deer’s maximum growth rate is estimated using reproduction statistics. 

• At any given time, 66% of female deer are pregnant. Deer have an average litter size 
of 1.9, are pregnant for about 203 days, and exhibit balanced sex ratios. 

• If we observed a deer population and returned 203 days later, we would therefore 
expect to see 62.7% more deer. Therefore, without external constraints the 
population will grow according to the equation x = (,-./012 , with c denoting the 
starting population, and t denoting change in time (in years). 

• The location of equilibriums is estimated using food intake requirements.
• Should the growth in the deer population produce exactly the amount of meat 

required to sustain the mountain lion population, no change should occur in either.
• The average mountain lion requires 6.57 pounds of meat per day to survive. As the 

average mule deer weighs 177 pounds, with at most 133 pounds being edible 
biomass, a mountain lion’s survival requires 0.049 deer per day, which is 18.0 per 
year. 

First Model Behavior
The phase plane has two equilibrium points: a saddle point at (0,0) and a center at (c/d, a/b). 
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Logistic growth is introduced by the addition of (1-x/k) to the part of the equation controlling 
deer growth. This takes resource scarcity into account, and ensures that the deer population 
do not expand beyond its carrying capacity (k). The importance of this feature is highlighted 
by a potential behavior observable in the first model: without mountain lions the deer 
population will expand infinitely. While California’s natural carrying capacity for deer is an 
unexpectedly contentious topic, the deer population peaked at approximately 2 million before 
declining substantially to its current level of 540,000. 
Density dependence is introduced by the denominator now beneath both interaction terms. 
The effect of this change is best explained by an example. Say that an environment has 100 
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While all three models share similar equilibrium points (between mountain lions and deer), 
behavior around these points differs substantially between models. Furthermore, each 
addition of complexity made our models more fragile. While both species refused to die in 
the first model, far more scenarios involved extinction in the third model. This could be due 
to the nature of natural ecosystems, or the nature of mathematical models. 

Dubey, B., and Upadhyay, R.K. Persistence and Extinction of One-Prey and Two-Predators System. Nonlinear Analysis: Modeling and Control. 2004, 
Vol 9, No. 4. 

Green et. al., Reproductive Characteristics of Female White-Tailed Deer, Theriogenology, Volume 94, 2017.
Longhurst et. al., The California Deer Decline and Possibilities for Restoration, California Nevada Wildlife Transactions, Wildlife Society, 1976.

Pettorelli et. al., Predation, Individual Variability and Vertebrate Population Dynamics, Oecologia, 2011.
Pierce, Becky et. al. Selection of Mule Deer by Mountain Lions and Coyotes: Effects of Hunting Style, Body Size, and Reproductive 

Status.” 2000. Journal of Mammalogy, Volume 81, Issue 2. 
Xiao, Dongmei and Ruan, Shigui. Global dynamics of a ratio-dependent predator-prey system. Journal of Mathematical Biology. 2000. 

a Rate of growth without predation.
b Rate at which predation (interactions) decreases deer population.
c Rate at which mountain lions die without prey.
d Rate at which predation (interaction) increases mountain lion population.

When compared to empirical data, it becomes clear that both models discussed though this 
point are incomplete. Just 5,000 wild mountain lions roam California—well below what our 
two-species model predicts. While a wildlife policy of suppressing dangerous mountain lions 
while protecting deer from predation is likely the largest culprit, it is also worth considering 
other interactions within our ecosystem. Our third and final model maintains the concepts 
discussed in its antecedent while adding a third species: coyotes. The equations are displayed 
below, with y1 denoting mountain lions and y2 denoting coyotes.

!" = $! 1 − !4 − &8!'8
1 + 5! + '8 + 9':

− &:!':
1 + 5! + '8 + 9':

'8" = −(8'8 −;'8': +
*8!'8

1 + 5! + '8 + 9':
':" = −(:': − <'8': +

*:!':
1 + 5! + '8 + 9':

Most	new	parameters	are	direct	extensions	of	the	previous	model	(b2,	c2,	d2).	The	new	
term	gy2 in	each	denominator	generalizes	the	ratio	to	consider	all	three	species.	New	
interaction	terms	between	mountain	lions	and	coyotes	are	also	included	(my1y2,	ny1y2).	
Coyotes live in the same environments as mountain lions, and consume the same prey (deer). 
As mountain lions and coyotes are directly antagonistic to each other (beyond the indirect 
effects of consuming deer), both coefficients are negative. As mountain lions are far larger 
predators than coyotes (137 pounds vs 31 pounds), it can be assumed that n is the larger 
coefficient. 

a = 0.875, b = 0.02, c = 0.2, d = 0.000265

Initial Conditions: Deer = 600, Mountain Lion = 40

Equilibrium points: (755, 44), (0,0)

Conclusion, Sources

Y$(Z&[$< $\ 0,0 : 0.87 0
0 −0.2 , λ1= 0.87, λ2= -0.2 (unstable, saddle)

Y$(Z&[$< $\ 755, 44 : 0 −15.1
−0.012 0 , λ1= 0.417i, λ2= −0.417i (unstable,

non−generic , (Z<5[c;,* as center using numerical methods.)

$ − 2$!
4 − &'(' + 1)

(5! + ' + 1):
−&!(5! + 1)
(5! + ' + 1):

*'(' + 1)
(5! + ' + 1): −( + *!(5! + 1)

(5! + ' + 1):

Parameters:

a = 0.875, b = 1.8, c = 0.2, 

d = 0.1, f = 0.44, k = 1000

Equilibrium points: (757, 44), (0,0), (1000, 0)

Jacobian:

A plot of all three populations is shown below. Using our starting conditions and 
parameters (as well as reasonable variations thereof), the mountain lions (green) and 
coyotes (blue) engage in conflict, suppressing the population of each. The mountain lions 
eventually win, sending the coyotes into extinction. A numeric solver was used to find the 
equilibrium that all three species approach. 

Parameters:
a = 0.875, b1 = 1.8, b2 = 1.8, 
c1 = 0.2, c2 = 0.1, f = 0.44, 
k = 1000, m = 0.007, n = 0.017, 
d1 = 0.1, d2 = 0.092, g = 2
Equilibrium: The deer population approaches 
759.7, the mountain lion population approaches 
44.5, and the coyote population approaches 
extinction. 

Using this Jacobian, the equilibrium points can be categorized. The Jacobian for the only 
equilibrium where both species survive is shown below, along with the useful indicators it 
provides. 

J = −0.45896 −3.1775
0.0014 −0.2347

λ1= −0.257
λ2= −0.437

\c Y = −0.694
*,\ Y = 0.112

This makes (757, 44) a nodal sink (stable). Using the same techniques, (0,0) and (1000, 0) 
can both be categorized as saddle points. 
When initial populations are non-zero, they will eventually sink into a single equilibrium of 757 
deer and 44 mountain lions. Unlike the previous model, the equilibrium is always approached 
(nodal sink) rather than circled around (center). 

Three Models Examining Predator Prey Dynamics



Masked and Unmasked SIR Model

dSM/dt

dSU/dt

dIU/dt

dIM/dt

= -a(1-b)2 SMIM - a(1-b)SMIU  

= -a(1-b)SUIM - aSUIU

= a(1-b)SUIM + aSUIU  - cIU

= a(1-b)2SMIM + a(1-b)SMIU  - cIM

= c(IM+ IU)dR/dt



Analysis of Varying Effectiveness

25% Mask Effectiveness 75% Mask Effectiveness
Masked 50%
Unmasked 50%

Red = SM
Green = SU
Blue = IM
Purple = IU
Yellow = R

Time (days) Time (days)

Key observation: Wearing masks reduces infections in both the masked and 
unmasked populations.



% Recovered vs % Masked Population

Mask effectiveness = 0.75



To what extent do you agree with the 
following statement: “I feel that using 
Slopes increased my understanding of the 
mathematical models in my project.”

jm Student Feedback



“It's good just because visualizing helps a lot to 
be able to understand, especially when you get 
to higher levels of math and things get kind of 
hard to understand sometimes.”


“I really love how interactive it is …You can 
move it around and manipulate it. I like being 
able to click to see, okay, what does the 
solution with this initial condition look like?”

jm Student Feedback



Visualization and manipulation of 
mathematical models

Engagement in mathematical 
conversation with peers and 
professor

Demonstration of conceptual 
understanding (through activities 
and projects)

Using Slopes to Enhance Learning in Ordinary 
Differential Equations (K. Lucas and T. Lucas, 2022)

jm Student Learning
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