Improving Undergraduate Outcomes in Mathematics: What Do We Know? What Can We (Reasonably) Do?

Dr. Wendy M. Smith
University of Nebraska-Lincoln
OnLine Seminar on Undergraduate Mathematics Education (OLSUME)
25 October 2022

SEMINAL is supported by grants from the National Science Foundation (DUE-1624643, 1624610, 1624628, 1624639). All findings and opinions are those of the authors and not necessarily of the NSF.
What is the Problem?

• 95% of students in college math are taking courses at/below Calc 2 (3.2M)

• Average of 25% DFW at R1 institutions in Calculus (often closer to 50%)

• Failing math correlates highly with freshman dropouts

• After freshman year, students switch away from STEM majors (9-25%)

• Beliefs about & attitudes toward mathematics K-20 follow a decreasing trajectory
How Do People Learn?

- Teach others
- Do the math
- Discuss & critique
- Observe demonstration
- Listen
- Read

How does this align with how we teach?
What is “Active Learning”?

Teaching methods and classroom norms that promote:

1. Students’ deep engagement in mathematical reasoning
2. Peer-to-peer interaction
3. Instructor interest in and use of student thinking
4. Instructors’ attention to equitable and inclusive practices

Laursen and Rasmussen (2019)
Student belonging is critical to positive academic & social outcomes in higher ed, especially in STEM fields (Strayhorn, 2018)

Myriad factors can increase or decrease students’ feelings of belonging (personal, academic, social, relational, environmental, etc) (Salami et al., 2021)

Experiencing microaggressions leads to lower feelings of belonging (Franklin, 2016)
An n-dimensional problem ($n>2$) cannot be solved with a 1- or 2-dimensional solution

- Systemic approach needed to address the system that created/perpetuates current problems
- Cultural change is needed for a dept to shift away from lecture as the norm
- Cultural change encompasses people, power, structures, & beliefs
Effective Change Process

Assumptions

1. Start by developing a common vision of “success”
2. All relevant personnel are involved
3. Change is complex
4. Need “change agents”
5. Mathematical rigor is important
Goal: better understand how to enact and support institutional change aimed at implementing active learning in undergraduate mathematics learning environments

Collaborative Research:
NSF I-USE Grant
- $3.6 million, 2016-2022
- APLU
- University of Colorado Boulder
- University of Nebraska-Lincoln
- San Diego State University
- Phase 1: 6 cases of retrospective change
- Phase 2: 9 cases of incentivized change
- Phase 3: 12 cases of networked change
- AMS/MAA/CBMS handbook (May 2021)
Retrospective, Longitudinal & Ongoing Case Studies

- **Self-Study**
 - Understanding local contexts, data, student supports & histories
 - Dept Climate & Culture Survey

- **Local Data**
 - P2C2 student demographics
 - DFW rates
 - Course-taking trajectories
 - Placement
 - Retention
 - P2C2 Instructor Survey
 - P2C2 Student Survey

- **Observation**
 - Observe P2C2 courses

- **Interviews**
 - Administrators
 - Department leaders
 - P2C2 Coordinators
 - Faculty
 - Instructors of P2C2
 - Undergraduate Learning Assistants
 - Students in P2C2 courses

- **Phase 1 retrospective cases**
 - 6 site visits - Spring 2017
 - Handbook April 2021

- **Phase 2 longitudinal incentivized cases**
 - 9 sites x 3 site visits 2018-2021
 - PRIMUS special issue online (2020)

- **Phase 3 case studies**
 - 12 sites of depts wanting to make changes (virtual visits) 2020-2021
Seeing the System

- Institution
- Department
- Classroom
- Instructors
- Students

Connections to other departments

Community
SEMINAL hypothesis

Department
- Faculty Task Force
- Administrative Leadership
- P2C2 Coordinators
- Physical Resources
- Instructional Commitment to ALM
- Undergrad Learning Assistants
- Student Academic Support
- Access to Local Data
- Faculty/GTA Training

Classroom
- Activities and Tasks
- Peer-to-Peer Interaction
- Teacher Inquiry into Student Thinking
- Mathematical Coherence
- Norms for Discourse
- Instructional Decisions and Assessment
Critical features of transformed institutions:

✔ Institutional & community identities
✔ Campus culture with respect to teaching
✔ Effective leadership (opportunistic)
✔ Willingness to pay the costs of improved instruction
✔ Coordination of multi-section courses
✔ Sufficient support for enacting new pedagogies
✔ Flexibility
✔ Plan for succession/enculturation of people
SEMINAL Phases 2 & 3 - Local Change Strategies

• Initiate & expand course coordination (including assessments)
• Hiring (course coordinators, learning assistants; instructors)
• Instructor professional development
• Local data & course placement
• Active learning tasks & materials
• Culturally responsive teaching
• Planning for sustainability
• Recruiting strategic members (positions of power)
• Connecting with a network
Levers for Change

Involvement of:
- Campus administrators for undergraduate education (provost & dean levels)
- Chair & Vice Chair
- Faculty Task Force
- Course Coordinators
- Math Ed Researchers
- Instructors (faculty, adjunct, grad)
- Learning Assistants
- Students
● Access to university data system (student demographics, major, retention, graduation)
● Attendance (class, Learning Center)
● DFW rates & enrollment
● Course-taking trajectories (subsequent grades)
● Student surveys (beliefs, perceptions)
● Focus group interviews (students, instructors)
● Instructor survey, interviews
● Observation (coordinators, peers)
● Assessments (homework, exams, item-level)
● Department culture, instructor networks
Leadership

- Dept chair committed to efforts
- Faculty committee to drive and sustain reforms
- Align to university efforts
 - Freshman retention; graduation rates
 - Campus administrators’ priorities
- Coordinators
 - Semi-permanent
- Plan for sustainability
- Plan for turnover & bringing new people on board
In most classes

• Group work for majority of time
• Class time focuses on application problems
• Mini-lectures for 5-10 min as needed
• Instructor (+ Learning Assistant)

In large lectures

• Clicker questions to prompt discussions
Instructional Materials

- **Common course activities**
 - Worksheets
 - Course Packets

- **Assessment**
 - Homework
 - Quizzes
 - Exams/Midterms

- **Textbook/OER**

- **Messaging to students & instructors**
• Syllabus
• Textbook (OER)
• Lesson Plan Repository
• Course Packets/Worksheets
• Homework (e.g., WeBWoRK)
• Exams (Midterms & Final)
 • Common Grading (e.g., Grade Scope, Crowdmark)
• Weekly instructor meetings
 • Begin prior to semester
 • Anticipating topics that need more attention
Professional Development

- Pre-Semester
- Weekly
 - Instructor meetings
- Dept Teaching Seminar
 - Faculty & grad students
- Travel to workshops (IBL)
- Pedagogy Course for GSI/LA
“While it may be tempting to simply authoritatively state the correct order in which to perform horizontal transformations, doing so effectively removes ownership of knowledge from students, and encourages them to view mathematics as a set of arbitrary rules to be applied blindly. By removing ownership from students, we ultimately discourage students from building their own base of knowledge surrounding the topic.”

--Precalculus Instructor
Instructor Community of Practice

- Textbook
- Lesson Plan Repository
 contribute revisions, worked examples
- Weekly instructor meetings
- Advice networks for teaching and learning
Learning Assistants

- Support group work
- Training in supporting active learning
- Meet with instructors weekly
 - Reflect after class
- Recruited from math majors & students in courses with learning assistants
• Dedicated, renovated classrooms
 • Tables & chairs
 • Whiteboards all around
• More time (50 - 75 min)
Discussion Questions

- What are the most dominant aspects of your system context related to student outcomes in mathematics courses?
- What are your campus policies and cultural norms around educational innovation (in mathematics)?
- How might you use change levers to make progress toward improvement goals?
Useful Resources

SEMINAL book

PRIMUS Special Issue

https://www.tandfonline.com/toc/upri20/31/3-5?nav=tocList

https://bookstore.ams.org/mbk-138/?zs=L5oRC1&zl=rSpG6
Useful Resources

Accelerating Systemic Change Networks (ASCN) information on transforming institutions

ASCN Change Dashboard
https://ascnhighered.org/ASCN/change_dashboard/index.html

https://ascnhighered.org/ASCN/publications.html
Useful Resources

Practical plan for starting changes (checklists, inventories)

Teaching for Prowess
--Project focused on 2-year colleges and active learning

https://teachingforprowess.wordpress.com/
Opportunities for Continued Engagement

• Accelerating Systemic Change Network
 • https://ascnhighered.org/index.html

• Online communities
 • COMMIT Network https://www.comathinquiry.org/
 • MAA CONNECT https://connect.maa.org/home
 • AMATYC Communities https://my.amatyc.org/communities/allcommunities

• JMM 2023
 • Special Session on Lessons Learned from Successful Departmental Efforts to Transform Precalculus and Calculus (Jan 6 & 7 afternoons)
 • PEP Inclusive Active Learning in Undergraduate Mathematics (Jan 5 & 7, 8-10am EST)
Questions?

seminal@aplu.org
wsmith5@unl.edu