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IOLA: What is it?

The Inquiry-Oriented Linear Algebra (IOLA) project develops research-based student materials
composed of challenging and coherent task sequences that facilitate an inquiry-oriented approach to
the teaching and learning of linear algebra. The project also develops instructional support materials
to help instructors implement the IOLA tasks in their classrooms.
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How do we think about Inquiry?

* In terms of what students do and what instructors do in relation to student activity: (Rasmussen & kwon, 2007)

e Students learn mathematics through inquiry as they work on challenging problems that engage
them in authentic mathematical practices

* Instructors engage in inquiry by listening to student ideas, responding to student thinking, and
using student thinking to advance the mathematical agenda of the classroom community



How do we think about Inquiry?

* In terms of what students do and what instructors do in relation to student activity: (Rasmussen & kwon, 2007)

e Students learn mathematics through inquiry as they work on challenging problems that engage

them in authentic mathematical practices

* Instructors engage in inquiry by listening to student ideas, responding to student thinking, and

using student thinking to advance the mathematical agenda of the classroom community

* Four research-based goals in IBL classrooms: * Four key components of inquiry-oriented instruction:
(Rasmussen, Marrongelle, Kwon, & Hodge, 2017) (Kuster, Johnson, Keene, & Andrews-Larson, 2018)
* Get students to share their thinking e Generating student reasoning
* Help students to orient to and engage in e Building on student reasoning

others’ thinking * Developing a shared understanding

Help students deepen their thinking * Formalizing language and notation

Build on and extend student ideas



How do we think about Inquiry?

The rO|e Of the teaCher |S tOI (Kuster, Johnson, Rupnow, & Garrison, 2019)

1. Facilitate student engagement in meaningful tasks and mathematical activity related to an
important mathematical point

2. Elicit student reasoning and contributions

3. Actively inquire into student thinking

4. Be responsive to student contributions and use student contributions to inform the lesson
5. Engage students in one another's reasoning

6. Guide and manage the development of the mathematical agenda

7. Support formalization of student ideas and introduce language and notation when appropriate



Inquiry-Oriented Instruction

* Defining characteristics:
e The central role of Realistic Mathematics Education as an instructional design theory
* The curriculum materials go through some sort of iterative design, trial, and refinement cycle

* Research programs foundational to the |10l movement at the university level within the US:
* Inquiry-Oriented Differential Equations (IODE; Rasmussen et al., 2007; 2018)

1 ODE jode.wordpress.ncsu.edu

* Inquiry-Oriented Abstract Algebra (IOAA, Larsen et al., 2013)

taafu.org
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Realistic Mathematics Education

* Instructional design theory originating in the Netherlands (Freudenthal, 1991; Gravemeijer, 1999)
built on the tenet of mathematics as a human activity

e Start with students’ current ways of reasoning to build toward more formal, sophisticated
mathematics through guided reinvention

Reasoning reflects emergence
of a new mathematical reality;
support of prior models-for

activities no longcr required

Involves models-for that facilitate
a focus on interpretations and
. . .. solutions independent of the
Involves models-of that refer (implicitly o '
. . 4+ original task setting
or explicitly) to physical and mental

activity in the original task setting

Referential

Situational

Students work toward mathematical

goals in an experientially real setting



Design Research Spiral

CTE Web
Classroom Teaching OWG Develop Web-Based
PTE Experiment Online Working Group Instructor Guides
Paired Teaching
Experiment

Design —.
Develop tasks based on
RME design heuristics

T ) T

Reflect, Analyze, and Revise

Wawro, Andrews-Larson, Plaxco, & Zandieh (in press)



Context: Introductory Linear Algebra in the US

e Population is most likely:

* Second-year students or first-year students with Advanced Placement (AP) credit

e Students majoring in Engineering, Computer Science, Mathematics, Physics, Statistics, Economics

e Course most likely:

Is required for the aforementioned students

Has prerequisite courses such as Calculus | and sometimes Calculus Il
Focuses on topics in R™

Is not rigorously proof-based

Topics are vast and vary (see next slide)

Report on a US-Canadian
Faculty Survey on
Undergraduate Linear Algebra

Could Linear Algebra Be an Alternate First Collegiate
Math Course?

Christine Andrews-Larson, Jason Siefken, and Rahul Simha



Introductory Linear Algebra topics

Table 1. Topics appropriate for a first course.

e Systems of linear equations.

e Properties of R". Linear independence, span, bases,
and dimension.

® Matrix algebra. Column space, row space, null space.

¢ Linear maps. Matrices of a linear map with respect to
bases; the advantages of a change of basis that leads
to a simplified matrix and simplified description of
a linear map.

e Matrix multiplication and composition of linear
maps, with motivation and applications.

¢ Invertible matrices and invertible linear maps.

¢ Eigenvalues and eigenvectors.

¢ Determinant of a matrix as the area/volume scaling
factor of the linear map described by the matrix.

¢ The dot product in R". Orthogonality, orthonormal
bases, Gram-Schmidt process, least squares.

¢ Symmetric matrices and orthogonal diagonalization.
Singular value decomposition.

¢ Orthogonal and positive definite matrices.

The Linear Algebra Curriculum
Study Group (LACSG 2.0)
Recommendations

Sepideh Stewart, Sheldon Axler, Robert Beezer, Eugene Boman,
Minerva Catral, Guershon Harel, Judith McDonald,
David Strong, and Megan Wawro

Universally
covered
topics

W=

Solving systems using row reduction (97%)
Eigenvectors/values (97%)

Determining linear independence/dependence
of a set (94%)

Dot products (92%)

Characteristic polynomials (92%)
Diagonalization (92%)

Determinant formulas (91%)

Producing bases for subspaces (91%)

Often
covered
topics

Fundamental subspaces of a matrix (83%)
Similar matrices (77%)

Geometric / algebraic multiplicity (72%)
Non-diagonalizable matrices (69%)
Gram-Schmidt orthogonalization (64%)
Function spaces / polynomial spaces (63%)
Change of basis (58%)

Sometimes
covered
topics

AR WNEINOUNARWNREI®R®NGO WA

Determinants as volumes (52%)
Least squares (50%)

Complex numbers (48%)
Abstract vector spaces (42%)
Inner product spaces (36%)

Figure 1. Percent of respondents who report covering each

topic.

Report on a US-Canadian
Faculty Survey on
Undergraduate Linear Algebra

Could Linear Algebra Be an Alternate First Collegiate

Math Course?

Christine Andrews-Larson, Jason Siefken, and Rahul Simha




Unit 1: Magic Carpet Ride Sequence

* Was created to support students’ understanding of linear combinations, span, and linear independence

* Begins the course with a focus on vectors, their algebraic and geometric representations, and build
towards their properties as sets

 Starting with this instructional sequence fosters:

* The initiation of formal ways of reasoning about vectors as the ‘objects’ of linear algebra to be
investigated and understood

* A coordinated perspective between algebraic and geometric views of vectors and vector equations
* Anintellectual need (Harel, 2007) for sophisticated solution techniques and strategies

1O
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The Setting for Unit 1: Travel

You are a young traveler, leaving home for the first time. Your parents want to help you on your journey, so just before your
departure, they give you two gifts. Specifically, they give you two forms of transportation: a hover board and a magic carpet. Your

parents inform you that both the hover board and the magic carpet have restrictions in how they operate:

We denote the restriction on the hover board’s movement by the vector [ﬂ

By this we mean that if the hover board traveled “forward” for one hour, it would move along a “diagonal” path that
would result in a displacement of 3 miles East and 1 mile North of its starting location.

We denote the restriction on the magic carpet’s movement by the vector B]

By this we mean that if the magic carpet traveled “forward” for one hour, it would move along a “diagonal” path
that would result in a displacement of 1 mile East and 2 miles North of its starting location.




- We denote the restriction on the hover board’s movement by the vector [ﬂ

I By this we mean that if the hover board traveled “forward” for one hour, it would move along a “diagonal” path that
* would result in a displacement of 3 miles East and 1 mile North of its starting location.

We denote the restriction on the magic carpet’s movement by the vector B]

* By this we mean that if the magic carpet traveled “forward” for one hour, it would move along a “diagonal” path
that would result in a displacement of 1 mile East and 2 miles North of its starting location.

Task 1: Getting to Gauss

Your Uncle Cramer suggests that your first adventure should be to go visit the wise man, Old Man Gauss.
Uncle Cramer tells you that Old Man Gauss lives in a cabin that is 107 miles East and 64 miles North of your home.

Your goal:

Investigate whether or not you can use the hover board and the magic carpet to get to Gauss’s cabin. If so, how?
If it is not possible to get to the cabin with these modes of transportation, why is that the case?

As a group, state and explain your answer(s) on your group’s whiteboard. Use the vector notation for each mode of
transportation as part of your explanation and use a diagram or graphic to help illustrate your point(s).

10
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Task 1: Examples of Student Work




Task 1: Examples of Student Work

“We set up a system of equations, and we split up the x and y
compo-, or the east and north components, rather. Uh, you
have the hoverboard, which the basic unit vector was 3,1. And
the magic carpet was 1,2. And you had to get to 107,64.
Obviously none of these could go into 107,64 just by
themselves, so we had to use some combination of the magic
carpet and the hoverboard. So we did was we did 3 times x
that would give us — this was for the east component — that
would give us 3x and that represented the hoverboard. And
plus y, and that represents the magic carpet. And for the north
we did x + 2y equals 64 because that represents the north
components for the hoverboard and magic carpet. And when
we solved for that we got x =30 and y = 17. So you’d have to
spent 30 hours on the hoverboard and 17 hours on the magic
carpet, but it really doesn’t matter what order you go in. As
you can see here, if you go the hoverboard first and then you
go the magic carpet second. So, but here you can go the
magic carpet first and the hoverboard second and still reach

the same destination.”
10
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Task 1: Outccmes from the task

- Students are introduced to the expectation to work in groups, discuss, and present
mathematical thinking
* Students hear and appreciate multiple solution strategies

- Teacher tags student work and introduces formal notation for scalar multiplication, linear
combinations, vector equation, system of equations, and solution

* The class begins to coordinate geometric and algebraic views of linear combinations of vectors

10
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| We denote the restriction on the hover board’s movement by the vector [ﬂ

) By this we mean that if the hover board traveled “forward” for one hour, it would move along a “diagonal” path that
* would result in a displacement of 3 miles East and 1 mile North of its starting location.

We denote the restriction on the magic carpet’s movement by the vector B]

* By this we mean that if the magic carpet traveled “forward” for one hour, it would move along a “diagonal” path
that would result in a displacement of 1 mile East and 2 miles North of its starting location.

Task 2: Can Gauss Hide?

Old Man Gauss wants to move to a cabin in a different location. You are not sure whether Gauss is just trying to test
your wits at finding him or if he actually wants to hide somewhere that you can't visit him

Your Goal:

Are there some locations that he can hide and you cannot reach him with these two modes of transportation?
Describe the places that you can reach using a combination of the hover board and the magic carpet and those you
cannot. Specify these graphically and algebraically. Include a symbolic representation using vector notation. Also,
include a convincing argument supporting your answetr.

Use your group’s Jamboard slide as a space to collaborate and work on this problem and communicate your thoughts.

1O
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Task 2: Examples of Student Work
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Task 2: formalizing student work with new terms

The span of a set:
* The span of a set of vectors 1s all of the places in a space you could get to with those vectors
* The span of a set of vectors is all possible linear combinations of those vectors

« If{v,, v, ..., v, }is a set of vectors in R", then the set of all linear combinations of v, v,, ..., v, is called
the span of v, v,, ..., v, and is denoted by span{v,, v,, ..., v, }

[19]



Task 2: formalizing student work with new terms

The span of a set:
* The span of a set of vectors 1s all of the places in a space you could get to with those vectors
* The span of a set of vectors is all possible linear combinations of those vectors

« If{v,, v, ..., v, }is a set of vectors in R", then the set of all linear combinations of v, v,, ..., v, is called
the span of v, v,, ..., v, and is denoted by span{v,, v,, ..., v, }

LetS = {v,, v, ...,v,}. When is a vector v in the span of S?
A vector v is in the span of S, written v € span(S), if:

* You can travel to v using the vectors in S.

* There exists scalars ¢4, ¢,, ..., ck such that v can be written as a linear combination of the vectors of .

[19]

* There exists scalars ¢y, Cy, ..., ck such that such that v = ¢,v; + c,v, + --- + ¢,V .



Task 2: Referring back to task setting to try new problems

Determine the following. You can express your answer in words, symbols, and/or a graph.
Ml

Span{_

1.

2.

3.

Span{

Span{|

Span{

Span{: ,

Span{

7. s [16047] in the span of {[i], [;]}7 Why or why not?

(&1}
) ‘;]} 8. Is [3] in the span of {[_32], [_41]}? Why or why not?
JEANE| 3

? Why or why not?

-3
Y 9. Is[4]inthespanof{[ 0 ]
—2 —2

3]

} What conjectures do you have about what
might be true with respect to span?

[
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Task 3: Getting Back Home

Suppose you are now in a three-dimensional world for the travel problem, and you have three modes of transportation:

1 6 4
V= 1 v, = 3 V3 = 1
1 8 6
You are only allowed to use each mode of transportation once (in the forward or backward direction) for a fixed

amount of time (c¢; on v,, ¢, on v,, ¢; on V).

Find the amounts of time on each mode of transportation (c,, ¢,, and c;, respectively) needed to go on a journey
that starts and ends at home OR explain why it is not possible to do so.

Use your group’s Jamboard slide as a space to collaborate and work on this problem. Use graphs, computations,
mathematical symbols, etc. as you need to communicate your thoughts.

[
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Task 3 follow-up questions

1. [s there more than one way to make a journey that meets the requirements of Task 3? (In other words, is there
more than one solution to the relevant vector equation?) If so, what?

2. [s there anywhere in this 3D world that Gauss could hide from you? If so, where? If not, why not?

- e 1)

[
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Task 3: Examples of Student Work

([ 603 6[1)-[3)
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Task 3: formalizing student work with new terms

Linearly Dependent Set

» A set of vectors is called linearly dependent if you can make a nontrivial trip that begins and ends at home

» Aset of vectors {v, V,, ..., U} } is called linearly dependent if there are scalars cy, c,, ..., ¢ , at least one of
which is not zero, such that c,v;, + c,v, + -+ ¢, v, =0

* In this case, we’d say there is a nontrivial solution to the equation ¢;v; + c,v, + -+ ¢, v, = 0.

[
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Task 3: formalizing student work with new terms

Linearly Dependent Set
» A set of vectors is called linearly dependent if you can make a nontrivial trip that begins and ends at home

» Aset of vectors {v, V,, ..., U} } is called linearly dependent if there are scalars cy, c,, ..., ¢ , at least one of
which is not zero, such that c,v;, + c,v, + -+ ¢, v, =0

* In this case, we’d say there is a nontrivial solution to the equation c;v; + c,v, + -+ ¢, v, = 0.

Linearly Independent Set

» A set of vectors is called linearly independent if you can’t make a nontrivial trip that begins and ends at
home

* A set of vectors {v,, v,, ..., v} } is linearly independent if the only solution to the equation
c,v; + ¢,v, + -+ c,v, = 01s when all scalars ¢, ¢, ..., ¢, are zero.

* In this case, we’d say the only solution to the equation c;v; + ¢,v, + ---+ ¢, v, = 0 1s the trivial solution.

* A set of vectors that is not linearly dependent is called linearly independent. [l 0]
L A



Task 3: Outcomes from the task
C'Efgé:i([?;@[&[é] d i u—‘g “[ j/”]

G +3G + G5 =0 4 BT :
’l[ ] 7 ] /] ; : ~7-i‘7 \‘ ; ”:. |
I e N |

(+ Gt 6G=0
C" L C.Lr[ (_) /

Y
Cl:}ﬂ (}:‘l[ (3 =)
C=> |C>fl | Cg:;l

J o Solubs nus [ o e et s Aia
C=2X CinX C,~)<

- Students investigate existence and uniqueness of solutions to homogeneous vector equations by considering
“journeys that begin and end at home”

* Teacher tags student work and introduces formal notation for linearly dependent or linearly independent sets
Continue to work with linear independence and dependence with other examples

* Connect back to the ideas of reaching Gauss (solutions to vector equations) and span but in 3-space



Task 4: Creating Examples & Generalizations

Fill in the following chart with the requested sets of vectors. Keep track of the strategies
you use to generate the examples.

Linearly dependent set | Linearly independent set

A set of 2 vectors in R?

A set of 3 vectors in R?

A set of 2 vectors in R3

A set of 3 vectors in R3

A set of 4 vectors in R3

Write at least 2 generalizations that can be made from these examples and the strategies
you used to create them



Task 4: Creating Examples & Generalizations
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Task 4: Creating Examples & Generalizations
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Main Outcomes from Task:
Students create and justify generalizations about linear (in)dependence beyond R? and R3

* |f a set contains at two vectors that are scalar multiples of each other, then the set is linearly dependent.
 If at least one vector in a set is a linear combination of the other vectors in the set, then the set is linearly dependent

* Any set of vectors in R" containing more than n vectors is linearly dependent.

* Any set containing the zero vector is linearly dependent.
* There is an intellectual need for a way to efficiently check LI or LD; transition from here into row reduction

[
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Summary of Unit 1 in terms of RME

Situational activity involves students working toward Students explore ways of combining travel vectors in 2D and 3D.
mathematical goals in an experientially real setting.

Referential activity involves models-of that refer (implicitly or | Students explore the definitions and new examples of span and
explicitly) to activity in the original task setting. linear (in)dependence for sets of vectors through the task setting.

General activity involves models-for that facilitate solutions Students make and support conjectures about properties of sets of
and interpretations independent of the original task setting. | vectors regarding linear dependence, linear independence, and span.

Formal activity involves students reasoning in ways that Students use definitions of span ans linear (in)dependence without
reflect the emergence of a new mathematical reality and needing to unpack the meanings of these definitions (e.g., use those
thus no longer require support of prior models-for activity. concepts to reason about invertibility or eigentheory).




Current IOLA work

* Create additional IOLA instructional units; create new research findings regarding what is known about
student learning in linear algebra; provide professional development for interested instructors

* New units in bold:

Unit 1: Linear independence and span

Unit 2: Solutions to systems of equations

Unit 3: Matrices as linear transformations

Unit 4: Determinants

Unit 5: Subspaces

Unit 6: Change of basis, diagonalization, and eigentheory
Unit 7: Projection, orthogonalization, and least squares

(NSF DUE #1915156, 1914793, 1914841)

http://iola.math.vt.edu [
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New Units in Development

Unit 2: System of Linear Equations Unit 5: Subspaces

Systems Unit
Task 3: Adding constraints and generating examples

Task 3, Part 1: Possible third constraints. The university is considering adding a third The hallways in one wing of Ida B. Wells High School were changed to one-
constraint, and has asked you to provide feedback on several possibilities. The geogebra server way corridors to promote social distancing during a pandemic (red arrows in the
went down during your consulting meeting, and you’re asked to share some initial predictions diagram). These hallways connect classrooms A-D (the Art room, Biology lab,
about the corresponding systems and their solution sets. There are a variety of ways in which Civies room, and Drama room) as shown in the diagram. Each hall has a

: . N . . security camera that allows Principal McDaniel to monitor student movement
planes can intersect in three-dimensional space as shown below. WITHOUT using geogebra,

. P L. fo L . through the hallways (cameras 1-5, as shown in the diagram). As a further
provide an initial prediction of which of the following images (a-f) correspond to which systems. precaution, cach wing is isolated from the rest, so the students in a wing stay

within that wing and no students from any other part of the school will enter the

TRAVERSING ONE-WAY HALLS IN THE WEST WING

System 1 System 2 System 3 System 4 west wing.
xty+z=210 x+y+z=210 xtyt+z=210 xtytz=210 SCENARIO ONE: TRACKING MOVEMENT
Sx+7y+10z=1500 | Sx+7y+10z=1500 | Sx+7y+102z=1500 Sx+7y+102=1500 Before the school year starts, Principal McDaniel goes into the school when it is
x+y+z=500 z=y+20 3x+5y+82=1080 3x+5y+82=800 empty to spend a day learning how to use data from the camera system. Her
daughter Ella comes with her, and she asks Ella to help her test the system by
. . R . o walking between rooms — so long as she stays in the building and follows the
a. Three planes intersect in one point in R. b. Three planes intersect in a line in R?.

one-way hallway rules. Ella decides to start in the Art room, passes Camera 1

. (C1) as she walks from the Art room toward the Biology lab, and then continues
. walking past Camera 2 (C2) as she walks from the Biology lab to the Civics
. room. Afterwards, Principal McDaniel sees that the camera system has recorded
1
' o the number of people who walked by each camera with the vector p = |0|.

Organized around helping students understand the structure Organized around the notion that subspaces are non-empty
of infinite solution sets to systems of simultaneous equations. subsets of vector spaces that are closed under linear combinations.

S oo =

Unit 4: Determinants Unit 7: Least Squares

In these examples, the same matrix transforms all pre-images from one colum into their images in the next column. In other words, as you move from one column to B . . . .
the next, it's a single matrix that does the transformation between columns. Del iveri ng mai | to G auss in 3 D — Wlth a d rone
>N -1
/ n You've got some mail you need to give to Old Man Gauss, who now livesatbh = | 1 |.
x| AN AN L ,/ A ] 4
A bt 1 6
You still have the same modes of transportation you had before for travel in R®: v; = H v, = M
1 8
Your cousin has a drone that can travel along any vector in R®. They said they would lend it to you to deliver
Figure 1 Figure 1a Figure 1b Figure 1c Gauss's mail -- on the condition that you get as close as you can to Gauss's home before you use the drone.
3. With your group, try to determine the location that you can get to with v, and v that is the
shortest distance to Gauss's house. From there you can use your cousin'’s drone!
a) What s the location that you would travel to in order to use the drone? i.e., what is p?
. > N A b) How would you get there with v; and v,? i.e., what are x; and x,?
B —~ — — — e c) Along what vector would the drone travel? i.e., what is e?
g d) What distance would the drone’s trip be? i.e, what is | /|2
P n
Shen_inf> ) .
Figure2 Fgure 22 Fgure 20 Fgure 2¢ { L ,
\ 2 3 4
i 4
we
® AN A - A s
© = - ~ z =
(- 4 P pté
PN V,-& =0
* I 2
xe) Ae(1% p= b - ¢ ~ )
Figure 3 Figure 3a Figure 3 Figure 3¢ o o
Create a systematic way to quantify a distortion of space resulting from a matrix acting on objects in R JINEPS 3 F
*  Your goal is to assign a single real number to any 2x2 matrix to measure how it changes the size of objects in space. f
« Your measure needs to work consistently across all 2x2 matrices and all preimage/image pairs. Use the examples above as inspiration.

Organized around understanding determinants as a measure of Organized around the closest possible location that one can reach when it
multiplicative signed change in area/volume caused by the transformation. is not possible reach a desired location in a vector space.




Determinants Unit

.......... 2
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Task 1: Quantifying distortion
Students explore several examples of images distorted by a linear transformation
and are asked to identify a single quantity to describe this distortion.

https://www.geogebra.org/u/iolalinearalgebra



Closing thoughts

 The RME idea of guided reinvention can be an informal, accessible introduction to an idea that later
becomes formalized (e.g., “everywhere you can get” is the idea of span) or a mathematical activity
such as conjecturing and proving (e.g., students suggest that sets with the zero vector are LD)

* We have found trying to develop an intellectual need for new concepts or procedural skills to be
very helpful for students in following and appreciating the connection of concepts within the course

* Thinking about the teacher as a broker (Lave & Wenger, 1991) between the classroom community
and the mathematics community can help imagine your role as fostering students” mathematical
work and then aligning that with formal conventional terms and symbols from the mathematics
community (Zandieh, Wawro, & Rasmussen, 2017)



Closing thoughts

* Facilitating a mathematical conversation among the students can be hard and feel unnatural at first

* See “Typical Day” on the IOLA website for suggestions about facilitating whole-class discussion

Productive Whole Class Discussions

To facilitate substantive and rigorous whole class discussions, the following goals are necessary and foundational. Without
these, instructors will not have the conditions needed to ensure that the discussion deepens student reasoning and
understanding.

Goal One: Helping Individual Students Share Their Own Thoughts »

Goal Two: Helping Students Orient to and Listen Carefully to One Another »

Goal Three: Helping Students Deepen Their Reasoning »

Goal Four: Helping Students Engage with Others' Reasoning »

Goal Five: Building on and Extending Students' Ideas » http ://iola.math.vt.ed u/tvpicalday. php




Closing thoughts

e Give students space to explore and pursue a problem-solving approach that is sensible to them
* Encourage/motivate students to engage in each other’s ideas and collaborate
* Make listening to and learning from multiple students explaining their approaches a normal part of class

* Ask small groups to collectively share things they are confident about and things they are still confused or
curious about in order to encourage openness, curiosity, as well as to honor their current knowledge

* Use alternative modes of interaction. One idea: Discussion Board (credit: Christy Andrews-Larson)
* Prompt them to summarize their thinking on a task from class (e.g., one generalization about linear independence)
* Have them share one concept they feel confident they “know”
* Have them share one thing about which they “wonder”

* Have them give one “shout out” to someone who influenced their thinking



Thank you!

LOOkaI‘ us at IMM! McAfee Knob, Appalachian Trail, 45 min from Blacksburg. Photo Credit
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Wednesday January 4, 2023, 4:00 p.m.-5:30 p.m. i f -
JMM Workshop: Inquiry-Oriented Linear Algebra: Exploring (infinite) solution sets

Commonwealth, Sheraton Boston Hotel
Organizers:

Christine Andrews-Larson, Florida State University
Michelle Zandieh, Arizona State University

Jessica Lynn Smith, Vanderbilt University

Inyoung Lee, Arizona State University

Minah Kim, Florida State University

Friday January 6, 2023, 4:00 p.m.-5:30 p.m.

JMM Workshop on Inquiry-Oriented Linear Algebra: Exploring Determinants
Commonwealth, Sheraton Boston Hotel

Organizers:

Matthew C Mauntel, Florida State University

Megan Wawro, Virginia Tech

David Plaxco, Clayton State University

s

VIRGINIA TECH. mwawro@vt.edu



