PrairieLearn: A flexible platform for writing randomized, auto-grading questions

Matt West

Mechanical Science and Engineering

University of Illinois at Urbana-Champaign

With Mariana Silva, Nathan Walters, Tim Bretl, Dave Mussulman, Craig Zilles, Geoffrey Herman, Nicolas Nytko, Cinda Heeren, Jonatan Schroeder, Tim Yang, Philipp Hieronymi, James Balamuta, and many more

March 2nd, 2021

What is PrairieLearn?

• Flexible web platform for randomized question generation and auto-grading

• Open-source project used by hundreds of faculty

2

• Similar to WeBWork, LON-CAPA, WebAssign but more flexible and extensible

"Add numbers" question generator

C 11	DC	+ 1 /	on	h	+ m I
Чu	CD	CT.		• 11	CIIII

Make easy things easy, hard things possible

Learning principles:

- Scaffolded practice
- Immediate feedback
- Frequent testing
- Help from human instructors

Rich set of question components

Elements: a flexible extension mechanism

Share between questions and courses

Symbolic element

question.html

Poulsen et al., "Drag and Drop Proofs With Automated Feedback", 2021 (preprint)

Workspaces and containerized grading

Advanced randomization Randomized multiple-choice question with dynamic drawing A cannon ball with mass $m \neq 3$ kg) is fired downward from a cliff at <u>a height</u> h = (12.672 m), at an angle $\theta = 40^{\circ}$ with respect to the horizontal, and an initial velocity $v_0 \neq 21 \text{ m/s}$, as illustrated in the figure below Randomized parameters Python can generate HTML to change anything This image is generated dynamically using the provided angle. about the question The problem statement is selected at random (either given t find d, or given d find t) Suppose the ball hits the ground after $t=0.74~{ m s}$. What is the distance from the base of the cliff that the ball hits the ground? Assume the acceleration due to gravity is $g = 9.8 \text{ m/s}^2$. \odot (a) $d=14.588~{ m m}$ \odot (b) $d = 11.904 \mathrm{~m}$ \odot (c) $d = 15.54 \mathrm{~m}$ The correct answer and the distractors are computed based on the given parameters. \odot (d) $d=2.683~{ m m}$

New variant

 \odot (e) d = 9.989 m

Save & Grade

Save only

Write questions once, use everywhere

Case Study: Linear Algebra at Illinois

Assessm	ents					+Add assessment			Group work computational
		AID	Students	Scores	Mean Score	Mean Duration			Group-work computational
Comput	ational lab lesson								
CL1	Python tutorial	Lesson1-Tutorial	439		0%	14m			labe with Dython (Markov
CL1.1	Using PL for group work 🚢	Lesson0-Demo	409	\square	98%	13m			Iaus with Python (Ivialkov
CL2	Working with Vectors 😤	Lesson2-Vectors	402		87%	1h 0m			
CL2.1	Select your group (not for credit)	aa2-group-survey	362		0%	2m			chains imago processing etc)
CL2.2	Find out your assigned group (not for credit)	aa1-find-your-assigned-group	435		0%	8m			chams, image processing, etc)
CL3	Matrix Operations 🍣	Lesson3-MatrixOperations	423		97%	1h 14m			
CL4	Slinky: solving linear system of equations 😩	Lesson4-LinearSystems	410		98%	1h 9m			
CL5	Intro to Graphs and application to social network 😤	Lesson5-Graphs	2		0%	52m			
CL6	Discrete Cosine Transforms and Data Compression 🚢	Lesson6-DCT	0						Computational homowark
Comput	ational lab HW								Computational nomework
CHW1	Intro to Python	CLHomework1	434		95%	17m			
CHW2	Working with Vectors	CLHomework2	423		89%	49m			
CHW3	Matrix operations 47	CLHomework3	424		93%	48m			
CHW4	Linear System of Equations	CLHomework4	201	1	40%	45m			
CHW5	Graphs and Algebraic Graph Theory	CLHomework5	0						(Deculeu) le preserveule
CHW6	Coordinate systems and data compression	CLHomework6	0						Regular nomework.
CHW/	Markov chains	CLHomework7	0						
Сния	Dynamical Systems	CLHomework8	0						end the the all of the mean the level
CHW10	Singular Value Decomposition	CLHomework10	0						unimited attempts on
CHW11	Principal Component Analysis	CI Homework11	0						
Homewo	rks	0210110101111							and a second second second second second
HW1	Week 1 - Modules 1-4	Homework1	443		82%	1h 46m			randomized duestions
HW2	Week 2 - Modules 5-8	Homework2	422		87%	1h 14m			
HW3	Week 3 - Modules 9-12	Homework3	435		101%	2h 19m			
HW4	Week 4 - Modules 13-14	Homework4	425		104%	22m	Y		
HW5	Week 5 - Modules 15-18	Homework5	361		90%	1h 9m			
HW6	Week 6 - Modules 19-21	Homework6	58	h	38%	28m			Randomized auto-graded
HW7	Week 7 - Modules 22-25	Homework7	0						nundernized, dute graded
HW8	Week 8 - Modules 26-28	Homework8	0						
HW9	Week 9 - Modules 29-31	Homework9	0						evams with declining noints
HW10	Week 10 - Modules 32-34	Homework10	0						channs with acciming points
HW11	Week 11 - Modules 35-38	Homework11	0						
HW12	Week 12 - Modules 39-40	Homework12	0						
HW13	Week 13 - Modules 41-43	Homework13	0						
Exame	Week 14 - Modules 44-46	Homework 14	0						I croated by Dhilipp Hieropymi
E1	Midterm 1 1	Midterm1	435		89% _	41m			Γ created by Finipp Heronymi,
E2	 Midterm 2	Midterm2	0						/ 11 / /
E3	Midterm 3	Midterm3	0					N A	ariana Cilva Nicolas Nutko at al
E4	Final Exam	FinalExam	0						alialia Silva, Niculas Nytko, et al
			_	_					

Case Study: Linear Algebra at Illinois

Randomized exam generation

• Randomize question selection as well as question parameters:

• Statistics before and after exam to ensure fairness and quality

Retries give partial credit with mastery

Question 5: Add two numbers	Question
Consider two numbers $a = 9$ and $b = 8$	Best submission: unanswered
	Available points: 5, 3, 1 😮
What is the sum $c = a + b$?	Awarded points: 0 /5
c = number (3 significant figures)	Report an issue with this question
Grade	ve

Immediate auto-grading allows trying again for partial credit

Changing the way we test

Learning outcomes improve

- "Introductory Solid Mechanics": sophomore engineering, 250 students
- Same instructor, same content, same pen-and-paper final exam

20

Morphew et al., Applied Cognitive Psychology, 2020

Most efficient at scale and over time

- Immediate benefits for student learning at any scale
- Free up course staff time to help students and create better learning activities

CBTF: Computer-Based Testing Facility

Each exam runs for about 4 days, 10am to 10pm

Unlimited rescheduling allowed before the scheduled timeslot

Exam is available

22

Take the exam in a secure environment

Professional proctors

Security

cameras

Privacy screens

Firewalled internet

Full software platform (Python, RStudio, etc)

ID card swipe to check in

Many different exams concurrently

Calculators

Instructors focus on exam creation and data

No conflict handling, no proctoring, no sick students, no fuss.

Disability accommodations automatically handled

Reduced-distraction computers in separate cubicles

Extended-time exams managed by the scheduling software

Computerized exams in the time of COVID-19

- Up to 10,000 exams per week via dedicated Zoom proctors
- Students do exams on their laptops, using phones for proctor Zoom

• Managed by same scheduling software as the physical CBTF

Want to try PrairieLearn?

- Docs: https://prairielearn.readthedocs.io/
- Live site: <u>https://www.prairielearn.org</u>

• Code: https://github.com/PrairieLearn/PrairieLearn/PrairieLearn/GitHub GitHub

The hardest thing is spelling "Prairie" correctly